3.1.2.4 Оценка необходимой общей производительности коммутатора
В идеальном случае коммутатор, установленный в сети, передает кадры между узлами, подключенными к его портам, с той скоростью, с которой узлы генерируют эти кадры, не внося дополнительных задержек и не теряя ни одного кадра. В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов, трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Лучшим критерием по прежнему остается практика, когда коммутатор ставится в реальную сеть и измеряеются вносимые им задержки и количество потерянных кадров. Однако, существуют несложные расчеты, которые могут дать представление о том, как коммутатор будет вести себя в реальной ситуации.
Для того, чтобы коммутатор справился с поддержкой требуемого трафика, необходимо выполнение нескольких условий.
1. Общая производительность коммутатора должна быть больше или равна суммарной интенсивности передаваемого трафика:
где B - общая производительность коммутатора, Pij - средняя интенсивность трафика от i-го порта к j-му; сумма берется по всем портам коммутатора, от 1 до 6.
Если это неравенство не выполняется, то коммутатор заведомо не будет справляться с потоком поступающих в него кадров, и они будут теряться из-за переполнения внутренних буферов. Так как в формуле фигурируют средние значения интенсивностей трафика, то никакой, даже очень большой размер внутреннего буфера или буферов коммутатора не сможет компенсировать слишком медленную обработку кадров.
Суммарная производительность коммутатора обеспечивается достаточно высокой производительностью каждого его отдельного элемента - процессора порта, коммутационной матрицы, общей шины, соединяющей модули и т.п. Независимо от внутренней организации коммутатора и способов конвейеризации его операций, можно определить достаточно простые требования к производительности его элементов, которые являются необходимыми для поддержки заданной матрицы трафика. Перечислим некоторые из них.
2. Номинальная максимальная производительность протокола каждого порта коммутатора должна быть не меньше средней интенсивности суммарного трафика, проходящего через порт:
где Сk - номинальная максимальная производительность протокола k-го порта (например, если k-ый порт подддерживает Ethernet, то Сkравно 10 Мб/с), первая сумма равна интенсивности выходящего из порта трафика, а вторая - входящего. Эта формула полагает, что порт коммутатора работает в стандартном полудуплексном режиме, для полнодуплексного режима величину Сkнужно удвоить.
3. Производительность процессора каждого порта должна быть не меньше средней интенсивности суммарного трафика, проходящего через порт. Условие аналогично предыдущему, но вместо номинальной производительности поддерживаемого протокола в ней должна использоваться производительность процессора порта.
4. Производительность внутренней шины коммутатора должна быть не меньше средней интенсивности суммарного трафика, передаваемого между портами, принадлежащими разным модулям коммутатора:
где Bbus - производительность общей шины коммутатора, а сумма
SijPij берется только по тем i и j, которые принадлежат разным модулям.
Эта проверка должны выполняться, очевидно, только для тех коммутаторов, которые имеют внутреннюю архитектуру модульного типа с использованием общей шины для межмодульного обмена. Для коммутаторов с другой внутренней организацией, например, с разделяемой памятью, несложно предложить аналогичные формулы для проверки достаточной производительности их внутренних элементов.
Приведенные условия являются необходимыми для того, чтобы коммутатор в среднем справлялся с поставленной задачей и не терял кадров постоянно. Если хотя бы одно из приведенных условий не будет выполнено, то потери кадров становятся не эпизодическим явлением при пиковых значениях трафика, а явлением постоянным, так как даже средние значения трафика превышают возможности коммутатора.
Условия 1 и 2 применимы для коммутаторов с любой внутренней организацией, а условия 3 и 4 приведены в качестве примера необходимости учета производительности отдельных.
Так как производители коммутаторов стараются сделать свои устройства как можно более быстродействующими, то общая внутренняя производительность коммутатора часто с некоторым запасом превышает среднюю интенсивность любого варианта трафика, который можно направить на порты коммутатора в соответствии с их протоколами. Такие коммутаторы называются неблокирующими, что подчеркивает тот факт, что любой вариант трафика передается без снижения его интенсивности.
Однако, какой бы общей производительностью не обладал коммутатор, всегда можно указать для него такое распределение трафика между портами, с которым коммутатор не справится и начнет неизбежно терять кадры. Для этого достаточно, чтобы суммарный трафик, передаваемый через коммутатор для какого-нибудь его выходного порта, превысил максимальную пропускную способность протокола этого порта. В терминах условия 2 это будет означать, что второе слагаемое SiPik превышает пропускную способность протокола порта Сk.
- ВВЕДЕНИЕ
- 1.2 Экспертиза, проектирование и реинжиниринг инфраструктуры информационных ресурсов предприятия
- 1.2.1 Процесс проектирования и реинжиниринга ИР
- 1.2.2 Построение модели ИР предприятия
- 1.3.1 Бездефектное проектирование вычислительных систем
- 2. ПОСТАНОВКА ЗАДАЧИ
- 3. Изучить влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети.
- 3.1 Влияние топологии связей и производительности коммуникационных устройств на пропускную способность сети
- 3.1.1 Разделяемая среда передачи как причина снижения производительности сети
- 3.1.2 Повышение производительности путем сегментации сети мостами и коммутаторами
- 3.1.2.1 Разделение общей среды с помощью локальных мостов
- 3.1.2.2 Требования к пропускной способности моста
- 3.1.2.3 Сегментация сетей с помощью коммутаторов
- 3.1.2.4 Оценка необходимой общей производительности коммутатора
- 1. Моделирование компьютерных сетей
- 3.1 Основные задачи оптимизации локальных сетей
- 1.2. Обзор специализированных систем имитационного моделирования вычислительных сетей
- 79. Методы анализа вычислительных сетей и средств коммуникаций: математическое и имитационное моделирование. Использование при проектировании вычислительных сетей.
- Средства анализа и оптимизации локальных сетей
- 38. Настройка, мониторинг и оптимизация производительности сети.
- 5.3. Проблемы моделирования компьютеров и сетей