logo search
Аппроксимация ФУНКЦИИ

2.6 Рекомендации по выбору формы записи систем линейных алгебраических уравнений

Систему n линейных уравнений общего вида:

(4)

(4) можно записать посредством матричных обозначений в следующем виде: А·Х=В,

; ; (5)

квадратная матрица А называется матрицей системы, а вектора Х и В соответственно вектором-столбцом неизвестных систем и вектором-столбцом ее свободных членов.

В матричном виде исходную систему n линейных уравнений можно записать и так:

(6)

Решение системы линейных уравнений сводиться к отысканию значений элементов вектора-столбца (хi), называемых корнями системы. Чтобы эта система имела единственное решение, входящее в нее n уравнение должно быть линейно независимым. Необходимым и достаточным условием этого является неравенство нулю определителя системы, т.е. Δ=detA≠0.

Алгоритм решения системы линейных уравнений подразделяется на прямые и итерационные. На практике никакой метод не может быть бесконечным. Для получения точного решения итерационные методы требуют бесконечного числа арифметических операций. практически это число приходиться брать конечным и поэтому решение в принципе имеет некоторую ошибку, даже если пренебречь ошибками округлений, сопровождающими большинство вычислений. Что же касается прямых методов, то они даже при конечном числе операций могут в принципе дать точное решение, если оно существует.

Прямые и конечные методы позволяют найти решение системы уравнений за конечное число шагов. Это решение будет точным, если все промежутки вычисления проводятся с ограниченной точностью.