10. Технологии мультимедиа
Мультимедиа (от англ. multi — много, media — среда) — комбинированное представле-ние информации в разных формах (текст, звук, видео и т.д.).
Технология мультимедиа — интерактивная технология, обеспечивающая работу с неподвижными изображениями, видеоизображением, анимацией, текстом и звуковым рядом.
Развитием гипертекстовых технологий в глобальных сетях стало появление гипермедийных документов, которые наряду с текстовой информацией содержат информацию, представленную в мультимедийной форме.
Мультимедиа информация содержит не только традиционные статистические элементы: текст, графику, но и динамические: видео-, аудио- и анимационные последовательности. Типы данных мультимедиа информации представлены на рис.10.1.
Рис.10.1. Типы данных мультимедиаинформации
Человек воспринимает 95% поступающей к нему извне информации визуально в виде изображения, т.е. «графически». Такое представление информации по своей природе более наглядно и легче воспринимаемое, чем чисто текстовое. Различают векторную и растровую графику.
Векторная графика — это метод создания изображений в виде совокупности линий. Каждая линия рисунка представляется отрезками прямых (векторов) и сопрягающимися с ними отрезкам стандартных геометрических кривых. Для определения формы и расположения отрезка используются математические описания.
Растровая графика — метод создания изображения в виде растра набора разноцветных точек (пикселей), упорядоченных в строки и столбцы. В памяти компьютера такие изображения хранятся в виде битовых последовательностей, которые описывают цвет отдельных пикселей. При этом на каждый пиксель приходится конкретное число бит, определяющих ту или иную характеристику цвета.
Пиксель — минимальный участок изображения, которому независимым образом можно задать цвет, яркость и другие характеристики.
Однако в силу относительно невысокой пропускной способности существующих каналов связи, прохождение графических файлов по ним требует значительного времени. Это заставляет применять технологии сжатия данных, представляющих собой методы хранения одного и того же объема информации путем использовании меньшего количества бит.
Оптимизация (сжатие) — это представление графической информации более эффективным способом. Сетевая графика представлена преимущественно двумя форматами файлов — GIF и JPEG. Оба этих формата являются компрессионными, т.е. данные в них уже находятся в сжатом виде. Сжатие, тем не менее, представляет собой предмет выбора оптимального решения. Каждый из этих форматов имеет ряд настраиваемых параметров, позволяющих управлять соотношением качество-размер файла, таким образом, за счет сознательного снижения качества изображения, зачастую практически не влияющего на восприятие, добиваться уменьшения объема графического файла, иногда в значительной степени.
Формат GIF (Graphics Interchange Format — формат обмена изображениями) — один из старейших форматов записи изображений. Он был разработан в 1978 г. Формат GIF рассчитан на табличное кодирование изображений с применением 256-цветной палитры, при котором одним байтом записывают одно значение некоторого произвольного цвета. Для уменьшения объема полученные данные в процессе записи сжимаются по определенным алгоритмам. Этот формат используют для представления малоцветных изображений, имеющих большие области одинакового цвета.
Формат JPEG (Joint Photographic Experts Group — объединенная экспертная группа по записи изображений) является международным стандартом. Этот формат предназначен для эффективной записи полноцветных графических изображений. Он использует наличие необязательных данных в графических изображениях, например, для случайного просмотра человеческим глазом не требуется высокого разрешения для цветовой информации в изображении. Поэтому данные, представляющие высокое цветовое разрешение, могут быть исключены. Особенностью формата JPEG является использование схемы «кодирование с потерями», т.е. при воспроизведении данных, записанных со сжатием в формате JPEG, полученная последовательность неточно соответствует данным, имевшимся перед записью.
Запись и кодирование видеоизображений основано на представлении видеоряда в виде последовательности кадров и кодировании каждого из них как отдельного изображения с последующей записью последовательности кадров. Одним из наиболее распространенных методов кодирования видеоизображений является метод MPEG (Moving Picture Experts Group — Экспертная группа no записи видеоизображений).
Базовым объектом кодирования в стандарте MPEG является кадр телевизионного изображения. Поскольку большинство кадров имеют сравнительно небольшие отличия друг от друга, то, записав полностью один кадр, можно при записи последующего кадра записывать не все изображение, а только его отличия от предыдущего. В общей последовательности видеоряда выделяют опорные и промежуточные кадры. Опорные кадры являются начальными кадрами новых сцен, а промежуточные соответствуют одной сцене и имеют много общего с опорными кадрами.
Кодирование видеоряда начинается с записи опорного кадра. Сначала изображение разбивается на блоки фиксированного размера, которые кодируются и сжимаются с использованием специальных алгоритмов. Следующий кадр тоже разбивается на аналогичные блоки, которые сравниваются с блоками опорного кадра, а затем записываются только отличия от предыдущего кадра.
Существуют несколько разновидностей формата записи MPEG: MPEG-1, MPEG-2, MPEG-4, которые отличаются друг от друга качеством записи и степенью сжатия.
Звуковые сигналы характеризуются двумя величинами: частотой (высота звука) и амплитудой (громкость звука). Основным стандартным форматом записи звука является формат WAV, введенный в действие компаниями IBM и Microsoft. Существуют и другие форматы звуковых файлов, введенные другими корпорациями, однако выборки данных при звукозаписи имеют огромные размеры. Для передачи звука и музыки по медленным каналам связи, таким как телефонные соединения, используемые для доступа к Internet, используют специальный формат; записи МРЗ (MPEG-1 layer 3). В его основу положены особенности человеческого слухового восприятия, выражающиеся в том, что далеко не вся информация, которая содержится в звуковом сигнале, является полезной и необходимой — большинство слушателей ее не воспринимают. Поэтому определенная часть данных может быть сочтена избыточной. Эта «лишняя» информация удаляется без особого вреда для субъективного восприятия. При этом стандарт позволяет в заданных пределах менять параметры кодирования — получать меньшую степень сжатия при лучшем качестве или, наоборот, идти на потери в восприятии ради более высокого коэффициента компрессии.
Аппаратные средства мультимедиа включают аналого-цифровые и цифроаналоговые преобразователи для перевода аналоговых аудио- и видеосигналов в цифровой эквивалент и обратно, видеопроцессоры для преобразования обычных телевизионных сигналов к виду, воспроизводимому электронно-лучевой трубкой дисплея, декодеры для взаимного преобразования телевизионных стандартов, специальные интегральные схемы для сжатия данных в файлы допустимых размеров и т.д. Все оборудование, отвечающее за преобразование звуковых сигналов, объединяют в звуковые карты, а за преобразование видеосигналов – в видеокарты.
Звуковая карта — это плата, микросхема, позволяющая записывать и воспроизводить звуки, синтезировать музыку, управлять внешней акустической аппаратурой, подключенной к компьютеру.
Видеокарта — это плата, микросхема, согласующая обмен графической информацией между центральным процессором и дисплеем и управляющая выводом информации на экран.
- 1. Понятие информационной технологии, ее свойства. Роль информационных технологий в развитии экономики и общества
- Свойства информационной технологии
- 1. Информационные технологии позволяют активизировать и эффективно использовать информационные ресурсы общества, которые сегодня являются наиболее важным стратегическим фактором его развития.
- 3. Информационные технологии выступают в качестве компонентов соответствующих производственных или социальных технологий.
- 4. Информационные технологии сегодня играют исключительно важную роль в обеспечении информационного взаимодействия между людьми, а также в системах подготовки и распространения массовой информации.
- 5. Информационные технологии занимают сегодня центральное место в процессе интеллектуализации общества, развития его системы образования и культуры.
- 6. Информационные технологии играют в настоящее время ключевую роль также и в процессах получения и накопления новых знаний.
- 2. Классификация информационных технологий
- Классификация ит
- По характеру участия технических средств в диалоге
- 3. Архитектура пк, принципы работы внутренних устройств
- 1) Микропроцессор
- 2) Системная шина
- 3) Основная память
- 4) Внешняя память
- 5) Источник питания
- 6) Таймер
- 7) Внешние устройства (Периферийные устройства)
- 4. Основные виды периферийных устройств и принципы их работы
- 5. Информационные технологии конечного пользователя
- 1. Автоматизированное рабочее место
- Локальные вычислительные сети
- 2. Распределенная обработка данных. Технология «клиент-сервер»
- 8. Информационные технологии в глобальных сетях
- 1. История развития глобальной сети Internet
- 2. Электронная почта
- 3. Телеконференции
- 9. Гипертекстовые технологии
- Применение гипертекстовых технологий в глобальных сетях
- Сетевая служба www
- 10. Технологии мультимедиа
- 11. Технологические Процессы обработки информации в информационных технологиях
- 1. Технологический процесс обработки информации и его классификация
- 2. Организация технологического процесса обработки информации
- 12. Платформа в информационных технологиях
- Понятие платформы
- Операционные системы как составная часть платформы
- 3. Критерии выбора платформы
- 1. Отношение стоимость-производительность.
- 2. Надежность и отказоустойчивость.
- 3. Масштабируемость.
- 4. Совместимость и мобильность программного обеспечения.
- 12. Электронный офис