logo search
Ответы на экзамен ТСЗИ

32 Специальные исследования в области акустоэлектрических преобразователей.

В качестве преобразователей механической энергии акустического сигнала в электрические могут выступать элементы технических средств, обладающие различной природой и достаточно широким спектром физических свойств.

В первую очередь, это обратный эффект Фарадея. Напомним, что он заключается в том, что при движении проводника поперек силовых линий магнитного поля на его концах наводится ЭДС (при замкнутом проводнике - течет ток). Магнитное поле существует всегда (не будем забывать о магнитном поле Земли, не говоря уже о том, что любая деталь из сплавов железа, некоторых других металлов и их сплавов всегда намагничена). Следовательно, перемещение любого проводника (вибрация, дрожание), особенно многовитковой обмотки, неизбежно вызывает появление напряжения или тока, соответствующих акустическому (вибрационному) воздействию. Поэтому все моточные изделия (трансформаторы, реле, катушки индуктивности, дроссели и т.д. в составе ВТСС) всегда являются источниками акустоэлектрических преобразований. Кроме того, возникающая под воздействием акустических сигналов вибрация всякого рода сердечников перечисленных компонентов (это более характерно для материалов с высоким д) вызывает (за счет волн сжатия в материале) изменение их магнитной проницаемости (обратный магнитострикционный эффект, или эффект Веллари), что также вызывает появление сигнала в обмотке.

Вторая причина, часто проявляющаяся, это - различные емкостные эффекты. Если в конденсаторе, образованном некими проводящими элементами, одна обкладка движется относительно другой - изменяется емкость этого конденсатора, следовательно, меняется напряжение на обкладках.

Третий, весьма часто встречающийся эффект - это пьезоэффект. Большое число керамических конденсаторов выполняется из материалов типа ЦТС (цирконий-титанат свинца). Такие материалы всегда обладают пьезострикционным эффектом, т.е. при приложении к ним механического усилия (изгиб, сдвиг, сжатие и т.д.) на обкладках конденсатора генерируются электрические потенциалы, пропорциональные приложенному усилию. Короче говоря - нормальный пьезоэлектрический микрофон.

Есть еще ряд более «тонких» эффектов, но и этого достаточно, чтобы понять основной «закон» - «Микрофонит все!» И только измерениями можно доказать, что в каждом данном конкретном случае и при строго определенных режимах работы технических средств сигнал акустоэлектрического преобразования меньше нормы. Других способов не существует.

Все изложенное выше касается прямого акустоэлектрического преобразования.

Однако необходимо помнить, что в составе многих технических средств всегда штатно работают один или несколько разного рода ВЧ автогенераторов, как синусоидальных, так и релаксационных. Воздействие на их элементы (конденсаторы, дроссели, системы заряженных проводников и т.д., о чем говорилось выше) механических колебаний акустических сигналов, в общем случае, всегда (вопрос только в какой степени) приводит к изменению амплитуды и/или частоты/фазы этих колебаний, т.е. к модуляции. ВЧ колебания этих генераторов в той или иной степени излучаются в окружающее пространство и/или распространяются по отходящим от технических средств линиям. Так образуются модуляционные высокочастотные каналы акустоэлектрических преобразований, которые опасны не столько сами по себе, сколько именно тем речевым сигналом, который модулирует ВЧ колебания автогенераторов. Для этих каналов приходится учитывать и величину (амплитуду) несущей и коэффициент (индекс) модуляции.

Рассмотрев вкратце причины появления сигналов АЭП, познакомимся с основными схемами измерений.

Учитывая постановку задачи для прямого акустоэлектрического преобразования (определение значений сигналов АЭП речевого диапазона частот в отходящей от ВТСС линии, выходящей за пределы КЗ) типовая схема измерения приведена на рис. 5.12.

Исследуемое техническое средство может быть подключено к реальной отходящей линии, к некому имитатору или не подключаться ни к какой линии (режим «холостого хода»). Рассмотреть все возможные варианты и их особенности в рамках этого курса не представляется возможным, ограничимся только перечислением этих вариантов.

К отходящей линии (или к выходному разъему ВТСС) подключается измерительный прибор. Причем это подключение может быть гальваническим (как показано на рисунке) или бесконтактным (с помощью токового трансформатора).

Во всех случаях необходимо проводить измерения для всех возможных вариантов подключения: симметрично, несимметрично, два провода - «земля», так называемая цепь Пикара, по «разбитым» парам, если количество проводов более двух, по отношению к посторонней земле, два (или несколько) проводов вместе с использованием трансформатора тока или любым другим способом, который только придет в голову!!! Потенциальный противник всегда будет искать способ подключения с наилучшим отношением сигнал/помеха. Выбор из этого множества вариантов ложится на заказчика, или, если заказчик не определяет область исследований -на оператора.

Гальваническое подключение осуществляется, как правило, через стандартный предусилитель вольтметра (например, типа 233-5, 233-6, 233-7 нановольтметровUnipan). Установка токового трансформатора может производиться на один провод линии или на несколько одновременно, выбирая наилучшую комбинацию с точки зрения перехвата. Кроме того, применяя токовый трансформатор, необходимо учитывать, что он измеряет ток в линии, а нормируется напряжение в ней. Следовательно, необходим пересчет результатов измерений через эквивалентное сопротивление линии или источника сигнала АЭП.

Исследования любого технического средства необходимо проводить во всех возможных режимах его работы, если не оговаривается перечень режимов, при которых техническое средство будет работать при эксплуатации. Так, например, исследования многоскоростного бытового вентилятора необходимо проводить при включении его на разных скоростях с учетом допустимых отклонений напряжения питания при проведении измерений для каждой скорости. За конечный результат должно приниматься наибольшее значение опасного сигнала из всех измеренных при различных режимах. В установках прямой директорской (диспетчерской) связи, в которых существуют телефонный (на микротелефонную трубку) и громкоговорящий (на микрофон и динамик) режимы, исследования необходимо проводить как в том, так и в другом режиме, если в задании на проведение измерений не указан только какой-либо один рабочий режим. И таких примеров может быть множество.

Во всех случаях в протоколе исследований необходимо указывать все возможные режимы работы ТС с обоснованным указанием, по каким причинам тот или иной режим работы не проверялся.

Схема измерения сигналов АЭП от ТС, приведенная на рис. 5.12, достаточно стандартна для теории измерений и особых пояснений, на наш взгляд, не требует.

В ней опущены очень важные на практике вопросы заземления приборов, их электропитания, взаимного размещения. Необходимо отметить, что уровень помех в тракте измерения от этих факторов может меняться в десятки и сотни раз. Неоптимальное построение измерительного комплекса может быть причиной очень далеких от реальности результатов.

Борьба с помехами в измерительных трактах хорошо освещается в теории радиоизмерений и измерений в технике связи; все общие принципы этой теории справедливы и для данной методики, а дать рекомендации по многочисленным нюансам каждой конкретной измерительной схемы просто не представляется возможным. Данную задачу решает каждый оператор самостоятельно, опираясь на свой опыт, знание предмета измерений и в какой-то степени -интуицию.

Учитывая степень малости измеряемых в подавляющем большинстве сигналов акустоэлектрических преобразований, определенное внимание следует уделить снижению наводок тест-сигнала на измеряемое техническое средство и измерительный приемник.

Как правило, экранированную колонку размещают на расстоянии 1 м от исследуемого технического средства. Это расстояние не очень критично и выбирается, в первую очередь, исходя из требуемого уровня звукового давления в месте размещения технического средства и отсутствия наводок от колонки на исследуемое ВТСС.

Понятно, что даже хорошо экранированная колонка создает некоторые электрическое и магнитное поля, существование которых не должно вносить погрешности в измерения. Простейший способ определения того, что мы наблюдаем наводку тест-сигнала от акустического излучателя, измерительного тракта генератор-усилитель мощности и соединительных кабелей или непосредственно сигнал АЭП, состоит в «прикрывании» лицевой панели акустического излучателя звукопоглощающей шторкой с целью изменения (снижения) уровня воздействующего на ТС акустического сигнала, контролируемого с помощью шумомера. При этом наводка за счет воздействия электромагнитного поля генераторного оборудования на техническое средство, если она существует, останется неизменной, т.е. показания измерительного прибора, подключенного к техническому средству, не изменятся или, в крайнем случае, изменятся непропорционально снижению уровня акустического сигнала. В первом случае измеряемая величина тест-сигнала, «чистая» наводка, во втором - смесь сигнала наводки и сигнала акустоэлектрических преобразований.

Другим, достаточно эффективным способом определения достоверности измерения именно сигнала акустоэлектрического преобразования при той же измерительной схеме является изменение расстояния между генераторным оборудованием, включая акустический излучатель, и исследуемым техническим средством. При линейном изменении сигнала акустоэлектрического преобразования от расстояния измеряемый сигнал является следствием акустического воздействия на техническое средство, а при изменении измеряемого сигнала по закону 1/Я2 - 1/Я3 - наводка за счет электрического или магнитного полей генераторного оборудования. Этим способом удобно пользоваться для определения того, какая из составляющих электромагнитного поля преобладает в сигнале наводки. При изменении сигнала по закону близкому к 1/Я3наводка определяется преимущественно магнитным полем, при изменении по закону 1/Я2 - электрическим полем. Понимание природы образования сигнала наводки определяет и меры борьбы с ней. При электрической наводке, как правило, бывает достаточно организовать правильную схему заземления измерительного комплекса в целом. При магнитной наводке значительное снижение можно получить только симметрированием, применением экранированных симметричных кабелей со скрученными парами и разносом элементов измерительного (генераторного) тракта и технических средств.

При подготовке к проведению измерений необходимо ознакомиться с документацией на проверяемое техническое средство с целью определения принципов построения и всех возможных режимов работы изделия. Приступая к измерению, оператор должен ясно представлять себе, что, где и в каких режимах должно проверяться. Зачастую этот анализ не может быть проведен в полном объеме из-за отсутствия технической документации или неполной ясности о работе тех или иных узлов. Это, как правило, в значительной степени увеличивает время непосредственно измерений. Сразу отметим, проведение измерений без предварительного анализа, «в темную» - самый неэффективный способ, требующий неоправданно больших трудозатрат и, как правило, приводящий к серьезным ошибкам.

Первой задачей оператора является измерение всех выявленных в процессе предварительного анализа излучаемых в эфир и/или присутствующих в отходящих линиях сигналов, обусловленных работой встроенных автогенераторов в составе технических средств, а также их гармоник. Теоретически часть этих частот при реальных измерениях может быть и не обнаружена за счет:

- существующих в эфире и отходящих от ТС помех (при этом меры по борьбе с помехами должны быть приняты максимальные); здесь кстати вспомнить об экранированной камере;

- малой действующей высоты «случайных антенн», способных излучать сигналы тех или иных колебаний автогенераторов внутри самого ТС;

- преднамеренного или непреднамеренного (за счет размещения других блоков и модулей) экранирования как самих автогенераторов, так и отходящих от них физических цепей;

- наличия буферных каскадов на пути распространения сигналов автогенераторов и ряда других причин.

Эмпирических методов такого выявления довольно много и в настоящем курсе невозможно подробно рассказать о них всех. Каждый оператор должен решать эту задачу самостоятельно применительно к реальным условиям проведения измерений.

Обнаружением всех частот, на которых работают встроенные автогенераторы, выявленных в процессе анализа, задача не ограничивается. Всегда существует вероятность того, что проведенный анализ не является полным. К примеру, в современных сверхбольших интегральных микросхемах, как аналоговых, так и цифровых, имеется достаточно большое количество технологических генераторов, колебания которых теоретически также вполне могут модулироваться сигналами АЭП. В супергетеродинных приемниках при преобразовании входного радиосигнала неизбежно появление так называемых «зеркальных» частот, что так же должно учитываться при измерениях, несмотря на то, что такого автогенератора в приемнике нет. И хотя разработчики современных приемников стремятся максимально уменьшить уровень сигналов на этих частотах, вероятность модуляции «зеркальных» частот сигналами АЭП все-таки остается. Вспомним и о возможных различного рода «паразитных» модуляторах, о которых было сказано выше.

В связи с этим, кроме частот, определенных в результате проведенного анализа, необходимо обязательно проводить дополнительный поиск сигналов во всем диапазоне частот от 10 кГц до 1000 МГц. Все выявленные при поиске частоты также должны проверяться на наличие модуляции. В некоторых случаях обнаружение несущих частот автогенераторов и «продуктов» преобразований удобно проводить, использовав в качестве источника акустического сигнала датчик тест-сигнала, создающий на выходе акустический сигнал с 1...3 частотами в речевом диапазоне, промодулированных (манипулированных) частотой 0,5...2 Гц (упомянутая выше «пищалка»). Еще лучше такой сигнал подать на вход технического средства (если есть такая возможность). Такого рода сигналы очень хорошо выявляются на слух. Естественно, такого рода предварительный анализ нельзя считать окончательным, но некоторое снижение трудозатрат все же достигается.

На всех выявленных частотах необходимо измерить коэффициент и/или индекс модуляции акустическим сигналом. Способ определения вида модуляции (амплитудная или частотная) подробно изложен в упомянутой выше методике и приводить его здесь нет необходимости.

При проведении измерений следует иметь в виду следующее:

- при малых индексах угловой (частотной, фазовой) модуляции спектр сигнала полностью совпадает со спектром сигнала при амплитудной модуляции;

- при частотной модуляции индекс модуляции увеличивается прямо пропорционально номеру гармоники сигнала, и это еще раз подтверждает необходимость проведения исследований на максимально возможном измеряемом количестве гармоник сигналов автогенераторов.

Как уже указывалось ранее, выводы «ОС отсутствует» или «Модуляция опасным сигналом не обнаружена» недопустимы. В этих случаях необходимо проводить расчет «по шумам».

При организации работ следует учитывать, что измерения в области акустоэлектрических преобразований относятся к числу наиболее сложных инструментальных работ. Приходится учитывать очень большое число различных помех, создаваемых самим техническим средством, достаточно сложных и непостоянных во времени процессов, которые могут внести большие погрешности. Сами измерения весьма сложны, требуют значительных затрат времени. До настоящего времени не существует реальных средств автоматизации этих измерений, и поэтому почти все зависит от квалификации оператора.

Обратим внимание еще на один немаловажный аспект. Как уже отмечалось при рассмотрении области акустики и виброакустики, нормированные величины опасных сигналов заданы на границе контролируемой зоны. Достаточно часто встречается вариант, при котором на выходе некого ВТСС, ну, скажем, телефонного аппарата, опасный сигнал несколько превышает норму. Однако нельзя забывать, что до границы контролируемой зоны, т.е. до того места, где потенциальный противник может подключиться именно к этой линии, тянется 50...70 м телефонной пары. Линий без затухания не бывает. При этом совершенно естественно предположение, что опасный сигнал может достаточно ослабнуть для того, чтобы норма была выполнена. И снова мы приходим к необходимости измерить реальное затухание, на сей раз в электрической линии. Однако, в принципе, ничего в методе не меняется. Необходимо ввести в линию большой тестовый сигнал, в этой же точке измерить его величину. А потом измерить тот же сигнал на другом конце линии..

Какие-то сложности могут быть только при осуществлении подключений к линии (ввода сигнала в линию и вывода из нее), например, к линии электропитания. Необходимо защитить генератор от сетевого напряжения и в то же время создать достаточный тестовый сигнал. Конструкции и схемы таких переходных устройств существуют, и грамотные специалисты в области специальных исследований владеют необходимым оборудованием и умением его применять.

Еще одним «подвидом» специальных исследований в области акустоэлектрических преобразований являются исследования эффективности различных видов систем активной защиты. Достаточно часто приходится это оценивать, особенно в части прямого акустоэлектрического преобразования, т.е. при зашумлении линий. Как правильно измерить сигналы и оценить эффективность систем активной защиты?

Во-первых, должен быть измерен опасный сигнал в соответствии с методикой в отсутствии зашумления. Рассчитано значение эквивалентного сигнала. Отдельно снимается (измеряется) спектр зашумляющего сигнала системы активной защиты в той же линии и, как правило, в той же точке. Точнее - огибающая спектральной плотности. Почему именно спектр, а не интегральное значение во всей заданной полосе частот?

Не так уж редок случай, когда в заданном диапазоне (не столь важно узок он или широк, важен принципиальный подход) огибающая шумового сигнала весьма неравномерна. При этом не исключен вариант, при котором в каких-то частотных интервалах соотношение сигнал/шум будет меньше нормируемого, хотя при использовании интегральных значений все укладывается в норму. Именно поэтому, если огибающая спектральной плотности шума оказалась заметно неравномерной, нужно либо отдельно рассчитывать соотношения сигнал/шум для разных частотных интервалов, либо подставлять при расчете минимальное значение шума. И снова приходится указывать, что все принятые допущения и варианты измерений и расчетов должны быть изложены в протоколе.

При проведении специальных исследований технических средств необходимо рассматривать еще один канал возможной утечки - канал, образуемый за счет «паразитной» высокочастотной генерации (ПВЧГ) усилительных устройств в широком смысле этого слова. Возникновение генерации в усилительных устройствах всегда связано с наличием в них обратной связи (под которой понимается процесс передачи части выходного сигнала усилителя на его вход), как специально вводимой в схемы усилителей для стабилизации его параметров, так и образующейся за счет различного рода «паразитных связей» (емкости и индуктивности монтажа), старения элементов, и как следствие этого изменения их параметров и ряда других причин.