1.3. Индустрия искусственного интеллекта. Экспертные системы.
Бум, возникший в конце семидесятых годов в искусственном интеллекте и приведший к созданию новой отрасли промышленности, не случаен.
Его вызвали три причины:
1. Угроза всеобщей мобилизации населения земного шара в программисты привела к идее пятого поколения ЭВМ. Но создание таких ЭВМ требует разработки средств автоматического выполнения функций алгоритмиста и программиста, то есть интеллектуальных функций по формализации задач и составлению программ для их решения. А это уже сфера искусственного интеллекта, ибо одно из толкований целей этой науки состоит как раз в утверждении, что она должна создавать методы автоматического решения задач, считающихся в человеческом понимании интеллектуальными. 2. Развитие робототехнических малолюдных или безлюдных производств. На современных промышленных предприятиях происходит активное внедрение автоматических систем, в которых широко используются интеллектуальные роботы. Прогресс в этой области во многом зависит от того, насколько роботы могут хранить в своей памяти необходимую сумму знаний о профессии, которой они овладевают. 3. Необходимость передавать на ЭВМ задачи из плохо структурированных проблемных областей. Именно для них нужно автоматизировать труд алгоритмиста, его способность формализовать то, что с трудом поддается формализации. Путь решения этой проблемы - формализация знаний, которые есть у профессионалов в данной проблемной области. Такие профессионалы являются экспертами своего дела, а получаемые от них знания обычно называют экспертными. Если в базу знаний системы заложить знания подобного типа, то система будет называться экспертной.
ЭВМ пятого поколения, интеллектуальные роботы, экспертные системы и многие другие интеллектуальные системы обладают одним общим свойством: их работа основывается на знаниях, хранимых в базе знаний системы. Их часто так и называют - системами, основанными на знаниях.
Экспертные системы.
Экспертные системы могут не только найти решение той или иной задачи, но и объяснить пользователю, как и почему оно получено. Это означает, что в экспертных системах реализована возможность "самоанализа", в них появилась возможность рассуждать о знаниях и манипулировать ими. А значит появилась и возможность иметь знания о знаниях, т.е. метазнания. С их помощью в экспертных системах стала возможной оценка знаний с точки зрения их полноты и корректности, а также реализация "функции любопытства", связанной с активным поиском связей между хранящимися в памяти знаниями, их классификацией и пополнением за счет разнообразных логических процедур.
В экспертных системах сделан важный шаг - знания, хранящиеся в системе, стали объектом ее собственных исследований. Потенциально человек способен к овладению любым видом интеллектуальной деятельности, ибо он обладает универсальными метапроцедурами, позволяющими ему создать процедуры решения конкретных интеллектуальных задач. Развитие теории искусственного интеллекта в конце шестидесятых годов началось с осознания именно этого факта.
У новой науки появился свой специфический объект исследований и моделирования - универсальные метапроцедуры программирования интеллектуальной деятельности. В их числе имеются метапроцедуры общения, обучения, анализа воспринимаемой системой информации и многие другие. Но центральное место здесь, несомненно, занимают те метапроцедуры, которые связаны с накоплением знаний и использованием их при решении интеллектуальных задач. Существующие сейчас экспертные системы принято делить на два класса: консультационные и исследовательские. Первые призваны давать советы, когда у пользователя возникает необходимость в них, а вторые - помогать исследователю решать интересующие его научные задачи.
Система общения позволяет вводить в экспертную систему информацию на естественном языке, и организует ведение диалога с пользователем. Эта система сообщает пользователю о непонятных для нее словах, о допущенных им ошибках, предлагает наборы действий, которые пользователь при желании может выполнить. Если пользователь еще не освоил "этику приема", то в дело включается блок обучения: в диалоговом режиме он постепенно обучает пользователя общению с ЭВМ, учит его решению задач, используя примеры. Пользователь может обращаться к этому учителю когда захочет - система всегда найдет время для пояснения непонятных пользователю моментов. Решатель осуществляет поиск вывода решения, нужного пользователю на основе тех знаний, которые хранятся в базе знаний системы. Он играет роль мозгового центра системы. Предположим, что в полевых условиях археолог столкнулся с находками, которые поставили его перед задачей датировки раскапываемого объекта. точная датировка требует тщательного изучения находок, привлечения огромного по объему сравнительного материала из находок других археологов, требует от археолога умения делать правильные логические выводы, выдвигать гипотезы и отвергать их на основании найденного. При работах на раскопках рядом может не быть тех специалистов, которые могли бы оказать квалифицированную помощь. Именно для такой ситуации предназначена консультационная экспертная система. Когда археолог через систему общения обращается к системе за консультацией, то она может начать с того, что потребует ввести описание всех тех находок (на языке, понятном системе), которыми этот археолог располагает. Получив в свое распоряжение эти описания, экспертная система начинает формировать логический вывод. От исходных фактов, введенных в нее, и с помощью тех взаимосвязей, которые должны существовать между фактами, она выводит гипотезы, которые не противоречат наблюдаемым фактам. Если эта гипотеза однозначна, то она сообщается пользователю. Если имеет альтернативные возможности, то экспертная система может задать археологу дополнительные уточняющие вопросы. Если археолог не может сообщить системе никаких новых дополнительных сведений, то ему будет сообщено несколько гипотез о датировке. При этом каждая гипотеза может оцениваться некоторым весом достоверности. Например, ответ может иметь вид: "Данный объект относится к периоду А с достоверностью 15% и к периоду В с достоверностью 85%".
Информация в базе знаний не хранится, как зерно в элеваторе, просто сваленное в бункер. В этом случае база знаний не смогла бы обеспечить эффективную работу решателя. В экспертной системе существует специальный комплекс средств, с помощью которых в базе знаний наводится необходимый порядок. Информация здесь классифицируется, обобщается, оценивается ее непротиворечивость, отдельные информационные единицы объединяются связями различного типа.
Другими словами, в базе знаний возникает структурированная модель проблемной области, в которой отражены все ее особенности, закономерности и способы решения задач. Всеми этими процедурами заведует система поддержки базы знаний. Система объяснения - важнейшая отличительная компонента экспертных систем. К ней пользователь может обращаться с вопросами типа "Что есть X?", "Как получен У?", "Почему получен У, а не Z?" и "Зачем нужен X?". За каждым таким вопросом скрывается свой комплекс процедур, выполнение которых позволяет дать пользователю интересующий его ответ.
Возможны и другие типы вопросов пользователя к системе объяснения, но и приведенных достаточно, чтобы понять, сколь важна ее роль: только она делает выдаваемые решения понятными и обоснованными для пользователя. Почти так же, как и консультативные, устроены исследовательские экспертные системы, но в них имеются еще и блоки, в которых выполняются все необходимые для специалиста расчеты. Можно сказать, что экспертные системы такого типа - это симбиоз ЭВМ пятого поколения и консультационных экспертных систем.
- 1.1. Методы программирования.
- 1.2. Технологическая схема решения задач.
- 1.3. Индустрия искусственного интеллекта. Экспертные системы.
- 1.4. Законы эволюции программного обеспечения
- 1. Понятие и основные характеристики программного модуля.
- 2.2. Методы разработки и контроль структуры программы.
- 2.3. Типы модуля в Delphi.
- 2.4. Динамически подключаемые библиотеки.
- 1. Основные понятия объектно-ориентированного программирования.