2.2 Общие методы построения математической модели
Общий подход к построению модели для решения задачи исследования системы:
Математическая модель существует в виде «модель-алгоритм-программа»: исследователь получает в руки универсальный, гибкий и недорогой инструмент, который вначале отлаживается, тестируется в пробных вычислительных экспериментах. После того, как адекватность (достаточное соответствие) триады исходному объекту установлена, с моделью проводятся разнообразные и подробные „опыты“, дающие все требуемые качественные и количественные свойства и характеристики объекта.
Пусть мы собираемся исследовать некоторую совокупность S свойств реального объекта a с помощью вычислительного эксперимента (здесь термин объект понимается в наиболее широком смысле: объектом может служить и любая ситуация, явление, процесс и т.д.). Для этого мы выбираем (строим) „математический объект“ a' — систему уравнений, или арифметических соотношений, или геометрических фигур, или комбинацию того и другого и т. д.,— исследование и должно ответить на поставленные вопросы о свойствах S. В этих условиях a' называется математической моделью объекта a относительно совокупности S его свойств.
В технологии моделирования традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.
Прямая задача: структура модели и все ее параметры считаются известными, главная задача — провести исследование модели для извлечения полезного знания об объекте. Типичные примеры прямой задачи: какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда на различной скорости, или на ветер), как самолет преодолеет звуковой барьер, не развалится ли он от флаттера?
Обратная задача: известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение) или быть результатом специально планируемого в ходе решения эксперимента (активное наблюдение).
Одним из первых примеров решения обратной задачи с максимально полным использованием доступных данных был построенный Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.
Разработчики моделей находятся под действием двух взаимно противоречивых тенденций: стремления к полноте описания и стремления к получению требуемых результатов возможно более простыми средствами. Достижение компромисса ведется обычно по пути построения серии моделей, начинающихся с предельно простых и восходящих до высокой сложности (существует известное правило: начинай с простых моделей, а далее усложняй). Простые модели помогают глубже понять исследуемую проблему. Усложненные модели используются для анализа влияния различных факторов на результаты моделирования. Такой анализ позволяет исключать некоторые факторы из рассмотрения.
Создание математической модели преследует две основные цели:
- дать формализованное описание структуры и процесса функционирования системы для однозначности их понимания;
- попытаться представить процесс функционирования в виде, допускающем аналитическое исследование системы.
Единой методики построения математических моделей не существует. Это обусловлено большим разнообразием классов систем.
Построение модели, отражающей статику системы (состав компонентов и структуру связей) не вызывает больших затруднений. Для динамической системы статику необходимо дополнить описанием работы системы во времени.
Как разделить модель на подмодели, как построить иерархию моделей для исследования элементов (декомпозиция) и как их потом объединить для исследования системы в целом, чтобы объяснить целое через частности – основная проблема моделирования.
Абстрагирование - упрощенное описание системы, при котором отделяются самые существенные для исследования системы свойства и особенности поведения от несущественных. В основе абстрагирования – минимизация связей.
Выбор правильного набора абстракций (сущности и поведения) для заданной предметной области представляет собой главную задачу неформализуемую задачу формирования модели.
Декомпозиция. Основная операция системного анализа (неформальная) – декомпозиция (разделение целого на части). Применительно к построению структуры модели – определение состава модели (компонентов).
Компонент – любая часть предметной области, которая может быть выделена как некоторая самостоятельная сущность. Это и система (модель) в целом, и любая часть системы (модели) – подсистема, элемент.
Основная сложность декомпозиции – определение базовых (неделимых) моделей компонентов, соотношение моделей микро- и макроподхода. В основе декомпозиции – достижение компромисса между полнотой набора формальных моделей рассматриваемой системы и простотой – он может быть достигнут, если в модель включаются только модели компонентов, существенных по отношению к цели моделирования.
При математическом моделировании сколько-нибудь сложного объекта описать его одной моделью для всестороннего исследования практически не удается, и если такая модель была бы построена, то она оказалась бы слишком сложной для количественного анализа.
Рассмотрение вместо самой системы (факта, явления, процесса, объекта) математической модели всегда несет идею упрощения – выявление существенного и отсекание несущественного (бритва Оккама). Это позволит достичь необходимый компромисс между простотой описания и необходимостью учета многочисленных и разноплановых характеристик системы (проблема должна быть рассмотрена всесторонне и подробно) и простотой. Это неформальное действие – компромисс достигается после определения понятия существенности для данного исследования (степень влияния на результат).
Пример: оптимальное распределение инвестиций между предприятиями, при котором общий объем продукции был бы максимальным. Решение задачи зависит от принятого вида модели производства и вида модели целевой функции – в зависимости от этого оптимизационная задача может быть решена аналитически или методами имитационного моделирования.
Агрегирование представляет собой процесс, обратный декомпозиции – моделируется укрупненная система, количество рассматриваемых элементов сокращается (и соответственно связей).
Высокая степень агрегации (укрупненные объекты системы и основные связи между ними) дает возможность достаточно просто исследовать систему в целом, но при этом усложняется изучение каждого элемента (его структуры и связей), что может оказать влияние на исследование всей системы.
Низкая степень агрегации позволит достаточно подробно изучить каждый элемент, его структуру и связи, но при этом значительно усложнится изучение взаимодействия элементов и связей системы.
Агрегация может означать не только физическое вхождение одного объекта в другой, но и концептуальное. Самолет состоит из крыльев, двигателей, шасси и прочих частей. С другой стороны, отношения акционера с его акциями - это агрегация, которая не предусматривает физического включения.
Операция агрегирования используется для синтеза модели (построение структуры модели) и представляет собой установление отношений между компонентами - агрегатами (в данном случае – между компонентами модели).
Свойства агрегата не являются только совокупностью свойств его отдельных элементов – агрегат как система может обладать такими свойствами, которых нет ни у одного из составляющих его элементов (выражение закона диалектики – переход количества в качество).
Установление отношений может быть проведено различными способами: агрегацией, присоединением, построением функциональных зависимостей (формирование оператора), отражающих физические связи (потоки передачи вещества, энергии, информации), классификацией и др. (пространственные, временные отношения).
Отношение агрегации устанавливается между подсистемами (подмоделями), одна из которых включает в качестве составной части другую. Такое множество представляет собой дерево подсистем (подмоделей).
Отношение присоединения отражает возможность присоединения элемента к компоненте в качестве значения одного из атрибутов.
Отношение классификации устанавливает отношение эквивалентности между элементами системы (модели) – описывает условия образования классов.
Чтобы понять во всех тонкостях поведение сложной системы, используется не одна модель – процесс исследований становится итеративным. Каждая модель может описывать либо укрупнено всю систему, либо более подробно определенную часть системы. В процессе исследований оценивается поведение каждой модели в обычных и необычных ситуациях, затем проводятся соответствующие доработки моделей: укрупненные модели строятся на базе уточненных подробных моделей подсистем.
- 1 Методологические основы моделирования сложных систем
- 1.1 Системность
- Понятия общей теории систем
- Определение понятия системы
- Основные свойства, обязательные для любой системы.
- Взаимодействие и взаимозависимость системы и внешней среды.
- Определение понятий элементов, связей, функций, внешней среды системы. Элемент
- Внешняя среда
- Функции системы
- Сложность систем
- Системный подход
- Классификация систем
- Развитие искусственной системы и ее жизненный цикл
- 1.2 Моделирование
- Общая методология моделирования
- Основные принципы моделирования:
- Процесс моделирования
- Анализ и синтез в моделировании
- Примеры сложных систем Космическая система наблюдения Земли как сложная техническая система Задачи космической системы наблюдения Земли
- Состав и структура космической системы наблюдения Земли
- 2 Построение математических моделей
- 2.1 Математическая модель, математическое моделирование – основные понятия, термины и определения
- Цели математического моделирования
- 2.2 Общие методы построения математической модели
- Микроподход и макроподход в исследованиях системы.
- Формальная запись модели системы
- Понятие вариационных принципов
- Модульное построение моделей
- 2.3 Требования к построению модели
- Адекватность и достоверность модели
- Равнозначимость внешнего и внутреннего правдоподобия
- Анализ чувствительности модели
- Пример анализа на чувствительность экономической задачи
- 3 Математические модели состояния и структуры системы
- 3.1 Модель состояния системы Состояние системы и ее функционирование
- Формализация процесса функционирования системы
- 3.2 Модель структуры системы Основные понятия структуры системы
- Модель состава и структуры системы
- Методология моделирования структуры системы
- Виды структур
- Формирование структуры модели с позиций структурного моделирования.
- Построение структурных моделей
- 3.3 Модель процесса функционирования
- Установление функциональных зависимостей
- Неопределенность функционирования системы
- Пути уменьшения неопределенностей
- Основные требования к модели процесса функционирования
- Анализ функционирования, анализ структуры технической системы
- Функционально – физический анализ технических объектов.
- Пример разработки моделей деятельности организации
- Пример функционально – физического анализа технических объектов
- Конструкция бытовой электроплитки
- Функционально стоимостной анализ.
- 4 Этапы построения моделей
- 4.1 Постановка задачи моделирования
- Разработка содержательной модели
- Разработка концептуальной модели
- Описание внешних воздействий
- Декомпозиция системы
- Подготовка исходных данных для математической модели
- Содержание концептуальной модели
- 4.2 Разработка математической модели
- Разработка функциональных соотношений
- Выбор метода решения задачи
- Проверка и корректировка модели
- Анализ чувствительности модели
- Проверка адекватности модели
- Контроль модели
- Корректировка модели
- Уточнение модели проектируемого объекта
- Реализация математической модели в виде программ для эвм
- 4.3 Практическое использование построенной модели и анализ результатов моделирования
- Примеры построения моделей Математическая реставрация Тунгусского феномена
- 1. Сбор информации о явлении, выдвижение гипотез.
- 2. Содержательная постановка задачи исследования явления.
- 3. Математическая постановка задачи.
- 4. Анализ результатов.
- 5. Проверка адекватности модели – сравнение с натурным экспериментом.
- 6. Анализ результатов.
- Прогноз климатических изменений
- 1. Содержательная постановка задачи
- 2. Концептуальная постановка. Построение математической модели.
- 3. Проведение вычислительного эксперимента.
- 4. Анализ результатов вычислительного эксперимента.
- 5 Виды математических моделей
- 5.1 Классификация математических моделей
- Пример представления модели различной сложности и классификации.
- 5.2 Классификация математических моделей в зависимости от оператора модели
- Линейные и нелинейные модели
- Обыкновенные дифференциальные модели
- 5.3 Классификация математических моделей в зависимости от параметров модели Непрерывные и дискретные модели
- Детерминированные и неопределенные модели
- Дискретно-детерминированная модель
- Статические и динамические модели
- Стационарные и нестационарные модели.
- Формализация системы в виде автомата
- Формализация системы в виде агрегата
- Моделирование процесса функционирования агрегата
- Моделирование агрегативных систем
- Модель сопряжения элементов
- 6 Математические модели распределения ресурсов в исследовании операций
- 6.1 Моделирование операций распределения ресурсов
- Формулировка задачи математического программирования
- 6.2 Модели линейного программирования
- Формулировка общей задачи линейного программирования.
- Типовые задачи линейного программирования
- Транспортная задача.
- Задача коммивояжера.
- Задача о ранце.
- Общая задача теории расписаний.
- Примеры сведения практических задач к канонической транспортной задаче
- 6.3 Распределительные задачи линейного программирования
- Примеры распределительных задач.
- Распределение транспортных единиц по линиям
- Выбор средств доставки грузов.
- Задача о назначениях
- Экономическая интерпретация задач линейного программирования.
- Перевозки взаимозаменяемых продуктов
- Перевозка неоднородного продукта на разнородном транспорте.
- 7 Математические модели физических явлений и процессов. Универсальность моделей
- 7.1 Математические модели на основе фундаментальных законов
- Теоретический метод составления математических моделей
- Основные фундаментальные законы механики
- Работа, энергия, мощность
- 7.2 Уравнения движения
- Динамика поступательного движения.
- 7.3 Уравнения состояния
- Термодинамическая система.
- Упругие свойства твердых тел.
- Жидкости.
- 7.4 Универсальность моделей
- Модели на основе аналогий
- Типовые математические модели элементов и подсистем
- Модель колебательного процесса
- Модель консервативной системы.
- Электрическая подсистема.
- Модели элементов гидравлических систем
- Модели элементов пневматических систем
- 8 Моделирование производственных процессов
- 8.1 Модели систем массового обслуживания
- Основные элементы систем массового обслуживания.
- Характеристики потока
- Классификация смо
- Оценка эффективности смо
- Аналитические и статистические модели
- 8.2 Модели производственных процессов
- Дискретный производственный процесс
- Непрерывный производственный процесс
- Агрегатное представление производственного процесса
- Имитационное моделирование процессов функционирования
- Формализация основных операций производственного процесса Формализованная схема дискретного производственного процесса.
- Формализация отклонения течения производственного процесса от нормального
- Моделирование комплексного процесса обработки, сборки и управления при поточном производстве
- Формализованная схема непрерывного производственного процесса.
- 9 Синтез модели (проекта) системы
- 9.1 Проектирование системы как процесс создания (синтеза) ее модели
- 9.2 Методология проектирования
- Типовые проектные процедуры формирования облика системы
- 9.3 Эффективность системы Понятие эффективности системы
- Формирование модели цели системы
- Выбор критериев и показателей эффективности
- Основные принципы выбора критериев эффективности:
- Проблемы многокритериальности
- 9.4 Технология проектирования
- 9.5 Принятие решений в проектировании
- Выбор в условиях неопределенности
- Моделирование принятия решения
- Прогнозирование в принятии решений
- 9.6 Анализ инвестиционной привлекательности системы Основные типы инвестиций.
- Основные экономические концепции инвестиционного анализа.
- Состав работ при инвестиционном проектировании
- Конкурентоспособность проектируемой системы Оценка потенциальной емкости рынка и потенциального объема продаж
- Оценка конкурентоспособности
- Методы оценки эффективности инвестиций
- Метод определения чистой текущей стоимости.
- Метод расчета рентабельности инвестиций
- Метод расчета внутренней нормы прибыли
- Расчет периода окупаемости инвестиций
- Маркетинг и управление проектом
- Задачи управления проектами
- 9.7 Особенности синтеза модели (проекта) технических систем Этапы проектирования
- Особенности проектирования адаптивных систем
- Моделирование функционирования технической системы Особенности построения моделей при проектировании
- Формирование технического облика системы
- Формирование структуры системы
- Выбор основных проектных параметров системы
- Формирование множества вариантов системы
- 10 Информационное обеспечение синтеза системы
- 10.1 Основные задачи и типы информационных систем Общие свойства информационных систем
- Файл-серверные информационные системы
- Клиент-серверные информационные системы
- Архитектура Интернет/Интранет
- Хранилища данных и системы оперативной аналитической обработки данных
- 10.2 Особенности проектирования информационных систем
- Схемы разработки проекта
- 1. Предпроектные исследования
- 2 Постановка задачи
- 3 Проектирование системы
- Архитектура программного обеспечения
- Подсистема администрирования.
- Техническая архитектура
- Организационное обеспечение системы
- 4 Реализация и внедрение системы
- 10.3 Концепции автоматизации проектирования
- История развития сапр
- Классификация сапр
- Стратегическое развитие сапр Современное состояние сапр
- Направления разработки проектной составляющей сапр
- Разновидности сапр
- Математическое и информационное обеспечение сапр
- 11 Моделирование процесса управления
- 11.1 Основные определения
- Формальная запись системы с управлением
- 11.2 Модели систем автоматического управления
- Устойчивость движения систем
- Определение программного движения и управление движением
- 11.3 Модели автоматизированных систем управления
- Модели автоматизированных систем управления производственными процессами
- Модели автоматизированных систем управления предприятием