logo search
Шпоры ALL

2.2Моделирование простейшей одноканальной системы смо

В зависимости от соотношения производительности обслуживающего аппарата и интенсивности потока заявок может образовываться очередь. В простейшем случае эту ситуацию можно изобразить следующим образом:

Выход

Обслуживающий аппарат

Очередь

Поток заявок

Рис. Схема простейшей системы массового обслуживания

Заметим, что СМО могут быть достаточно сложными: в них могут присутствовать несколько ОА–каналов. Обслуживание может вестись с учетом приоритетов заявок.

Основными показателями СМО являются:

  1. Загрузка обслуживающих аппаратов.

  2. Коэффициент простоя ОА: (где - загрузка).

  3. Количество заявок, обслуженных за рассмотренный промежуток времени t (производительность).

  4. Средняя и максимальная длина очереди.

  5. Время пребывания заявки в очереди.

Понятно, что можно определенным образом построить модель, позволяющую вычислить эти характеристики. Основная задача при моделировании СМО – определить типы и количество обслуживающих аппаратов, а также их связь между собой (структуру СМО). Так, чтобы обеспечить максимальную требуемую производительность системы массового обслуживания при выполнении заданных ограничений (например, стоимость ОА).

Построение алгоритмической модели простейшей СМО

Введем следующие обозначения:

- момент поступления i-той заявки на вход очереди;

- время пребывания i-той заявки в очереди;

- время обслуживания i-той заявки ОА;

- момент выхода i-той заявки из ОА;

- интервал времени между поступлением i+1 и i-той заявок на вход в очередь.

На следующем рисунке представлены две возможные ситуации для момента поступления i+1 заявки:

а) Ситуация 1 ni= ti+1 – ti

б) Ситуация 2

Рис. Функционирование СМО

Разница в этих ситуациях заключается в том, что в ситуации а) ОА занят при поступлении i+1 заявки, а в ситуации б) - ОА свободен и значит, i+1 заявка сразу начнет обрабатываться.

Отдельно представляют алгоритмическую модель для вычисления СМО. При реализации этой модели на ЭВМ следует организовать цикл для перебора моделируемого количества заявок, ввести начальные заявки.

Найти

  1. На основании полученных данных необходимо вычислить характеристики:

    • загрузку СМО;

    • время загрузки;

    • общее время функционирования СМО;

    • производительность (среднее количество заявок, обслуживаемых за рассматриваемый период времени).

Моделирование количества заявок

- характеристики нормального закона.

- характеристики для закона генерации заявок.

Входные параметры: Загрузка, производительность, средняя и максимальная длительность очереди.

Если - при этом будет образовываться очередь.

В реальности часто встречаются ситуации, когда поток заявок является простейшим и подчиняется дискретному распределению Пуассона, а время обслуживания задается экспоненциальным законом распределения. Для таких систем массового обслуживания могут быть использованы модели, описываемые распределением Колмогорова. Входящий поток является простейшим, если вероятность того или иного числа требований зависит только от протяженности этого интервала и не зависит от его расположения на оси времени (стационарность). Причем требования поступают поодиночке (ординарность) и независимо друг от друга (отсутствие последовательности). Можно показать, что простейшие потоки описываются дискретным распределением Пуассона:

,

- где определяет среднее значение числа требований, поступивших за время t, - среднее число требований в единицу времени.

Экспоненциальное распределение для времени обслуживания задается плотностью, при этом среднее время обслуживания выражается математическим ожиданием и равно :