21.1.Оценка погрешности решения оду. Способ Рунге для оценки такой погрешности.
Основная цель приближённых вычислений заключается в нахождении результата с заданной степенью точности. В частности для оценки точности решения ДУ можно использовать такие способы:
Проверка выполнения условия задачи (например данное численное решение можно подставить в само ДУ и сравнить расхождение с его правой частью)
Двойной пересчет по возможности другим методом
Применение упрощённой расчетной схемы и качественный анализ задачи.
Локальная погрешность тем меньше, чем меньше шаг, в то же время при большом количестве шагов суммарная погрешность может возрастать. Если же шаг увеличить хотя время решения задачи сократится полученная точность может не удовлетворять исследователя. Для приближенной оценки точности решения можно использовать способ Рунге.
Способ Рунге для оценки такой погрешности.
Предполагает, что на зад. интервале решение выполняется с постоянным по величине шагом, а затем решение выполняется с удвоенным по величине шагом H=2h. Пусть при этом используется метод m-го порядка точности. Тогда на отдельном шаге h величина локальной погрешности составит: .
Предполагаем, что c шагом h выполняется 2n шагов, тогда Н→n.
Предположение на котором основан метод Рунге заключается в том, что на отдельном шаге погрешность равна:
- приближенное решение в конечной точке tk после 2n шагов величины h.
- приближенное решение в точке tk после n шагов величиной H=2h.
Y2n – неизвестное решение.
Считая на каждом шаге погрешность одинаковой, можно записать:
При вычислении с удвоенным шагом:
Система двух уравнений с двумя неизвестными A и Y2n. Решая, получим:
Уклонение точного решения от приближенного:
В частности для более распространенного метода Рунге-Кутта 4-го порядка (m=4):
Ещё раз заметим, что в основе этой оценки лежит предположение, что на отдельном шаге погрешность равна
- 1.1 Понятие о моделировании.
- 1.2 Системы массового обслуживания
- 2.1. Виды моделирования.
- 2.2Моделирование простейшей одноканальной системы смо
- 3.1. Математическое моделирование. Источники ошибок. Необходимость тестирования.
- 3.2 Простейший поток событий
- 4.1 Необходимость тестирования компьютерных моделей.
- 4.2. Замкнутые смо
- 5.1. Сравнение некоторых пакетов, расчетов и моделирований.
- 5.2. Открытая смо
- 6.1 Примеры задач приводящих к необходимости решения дифференциальных уравнений.
- 6.2 Понятие о конкурирующих стратегиях. Пример алгоритма для выбора рациональной стратегии.
- 7.1 Сведение произвольной системы оду произвольного порядка к системе оду 1-го порядка.
- 7.2 Приближение инженерных данных. Виды приближений.
- Поточечное среднеквадратическое приближение.
- Непрерывное приближение в среднеквадратичном смысле.
- Равномерное приближение.
- 8.1 Примеры сведения дифференциальных уравнений и их систем произвольного порядка к системе оду 1-го порядка в канонической форме Коши.
- 8.2. Интерполирование. Аппроксимация методом наименьших квадратов. Равномерное приближение. Поточечная аппроксимация табличных данных по методу наименьших квадратов.
- 9.1 Пример решения задачи о колебаниях одно массовой системы на основе использования встроенной процедуры Rkadapt.
- 9.2 Разложение аппроксиматора по системе базисных функций. Сведение задачи аппроксимации к системе лау.
- 10.1 Математическое моделирование механических колебательных систем со сосредоточенными параметрами .Системы с распределенными и сосредоточенными параметрами.
- Пример использования разложения аппроксиматора по базисным функциям в виде мономов.
- 11.1 Методика получения модели механических колебательной системы сосредоточенными параметрами на основе уравнений Лагранжа 2-ого рода
- 11.2Интерполирование, алгебраическое интерполирование, классический подход
- 12.1 Пример получения математической модели для двух массовой колебательной системы
- 12.2 Интерполирование на основе формулы Лагранжа
- 13.1 Математическая модель колебательной системы с вращательными степенями свободы
- 13.2 Пример документа MathCad реализующий поточечную среднеквадратичную аппроксимацию
- 14.1 Некоторые примеры MathCad для решения различных задач
- 14.2 Остаточный член формулы Лагранжа, пример оценки точности интерполирования с использованием остаточного члена
- 15.1 Пошаговые методы решения задачи Коши
- 15.2 О наилучшем выборе узлов интерполирования
- 16.1 Метод Эйлера для решения задачи Коши, реализация этого метод в среде MathCad
- 16.2 Тригонометрическое интерполирование
- 17.1 Модификация метода Эйлера для решения задачи Коши
- 17.2 Использование интерполирования при решении различных задач и реализация в среде MathCad
- 18.1 Метод типа Рунге-Кутта для решения задачи Коши
- 18.2 Использование встроенных функций для линейной аппроксимации по методу наименьших квадратов
- 19.1 Связь модифицированных методов Эйлера и методов Рунге-Кута второго порядка для решения задачи Коши
- 19.2 Понятие о сплайнах
- 20.1 Метод Рунге-Кута 4-ого порядка для решения задачи Коши формулы метода и их реализация в среде MathCad
- 20.2 Определение сплайна. Дефект сплайна, пример линейного сплйна
- 21.1.Оценка погрешности решения оду. Способ Рунге для оценки такой погрешности.
- 21.2 Кубический сплайн дефекта 2 (или сплайн Эрмита).
- 22.1 Метод стрельбы
- 22.2 Кубические сплайны дефекта 1
- 23.1 Использование случайных величин при моделировании различных явлений и процессов
- 23.2 Алгоритм «прогонка» для решения системы линейных уравнений с диагональным преобладанием.
- 24.1 Задача Бюффона как пример использования случайных величин при решении детерминированной задачи.
- 24.2 Пример использования сплайна для приближенного интегрирования функции
- 25.2 Использование параметрических сплайнов для интерполирования кривых
- 26.1 Пример реализации метода типа Монте-Карло в среде Mathcad для вычисления площади произвольной фигуры
- 26.2 Параметрический Эрмитов кубический сплайн.
- 27.1 Основные виды моделирования их преимущества и недостатки
- 27.2 Рациональные сплайны.
- 28.1 Декомпозиция и диакоптика
- 28.2Параметрический рациональный сплайн.
- 29.1 Понятие о компонентных и топологических уравнениях
- Механическая поступательная система.
- 29.2 О выборе узлов сетки при интерполировании различными сплайнами
- 30.1 Примеры получения эквивалентах схем для механических поступательных систем
- 30.2 Узловой метод построения математической модели