Компьютерное моделирование и исследование биполярного транзистора

дипломная работа

1.1.7 Применение транзисторов

Вне зависимости от типа транзистора, принцип применения его един:

Источник питания питает электрической энергией нагрузку, которой может быть громкоговоритель, реле, лампа накаливания, вход другого, более мощного транзистора, электронной лампы и т. п. Именно источник питания даёт нужную мощность для "раскачки" нагрузки.

Транзистор же используется для ограничения силы тока, поступающего в нагрузку, и включается в разрыв между источником питания и нагрузкой. То есть транзистор представляет собой некий вариант полупроводникового резистора, сопротивление которого можно очень быстро изменять.

Выходное сопротивление транзистора меняется в зависимости от напряжения на управляющем электроде. Важно то, что это напряжение, а также сила тока, потребляемая входной цепью транзистора, гораздо меньше напряжения и силы тока в выходной цепи.

Надо заметить, что это положение не всегда верно: так в схеме с общим коллектором (ОК) ток на выходе в в раз больше, чем на входе, напряжение же на выходе несколько ниже входного; в схеме с общей базой увеличивается напряжение на выходе по сравнению с входом, но выходной ток меньше входного. Таким образом, в схеме ОК происходит усиление только по току, а в схеме ОБ - только по напряжению. За счёт контролируемого управления источником питания достигается усиление сигнала либо по току, либо по напряжению либо по мощности (схемы с общим эмиттером - ОЭ).

Если мощности входного сигнала недостаточно для "раскачки" входной цепи применяемого транзистора, или конкретный транзистор не даёт нужного усиления, применяют каскадное включение транзисторов, когда более чувствительный и менее мощный транзистор управляет энергией источника питания на входе более мощного транзистора. Также подключение выхода одного транзистора ко входу другого может использоваться в генераторных схемах типа мультивибратора. В этом случае применяются одинаковые по мощности транзисторы.

Транзистор применяется в:

- Усилительных схемах. Работает, как правило, в усилительном режиме. Существуют экспериментальные разработки полностью цифровых усилителей, на основе ЦАП, состоящих из мощных транзисторов. Транзисторы в таких усилителях работают в ключевом режиме.

- Генераторах сигналов. В зависимости от типа генератора транзистор может использоваться либо в ключевом (генерация прямоугольных сигналов), либо в усилительном режиме (генерация сигналов произвольной формы).

- Электронных ключах. Транзисторы работают в ключевом режиме. Ключевые схемы можно условно назвать усилителями (регенераторами) цифровых сигналов. Иногда электронные ключи применяют и для управления силой тока в аналоговой нагрузке. Это делается, когда нагрузка обладает достаточно большой инерционностью, а напряжение и сила тока в ней регулируются не амплитудой, а шириной импульсов. На подобном принципе основаны бытовые диммеры для ламп накаливания и нагревательных приборов, а также импульсные источники питания.

- Транзисторы применяются в качестве активных (усилительных) элементов в усилительных и переключательных каскадах.

Реле и тиристоры имеют больший коэффициент усиления мощности, чем транзисторы, но работают только в ключевом (переключательном) режиме.

Вся современная цифровая техника построена, в основном, на полевых МОП (металл-оксид-полупроводник)-транзисторах (МОПТ), как более экономичных, по сравнению с БТ, элементах. Иногда их называют МДП (металл-диэлектрик-полупроводник)-транзисторы. Международный термин - MOSFET (metal-oxide-semiconductor field effect transistor). Транзисторы изготавливаются в рамках интегральной технологии на одном кремниевом кристалле (чипе) и составляют элементарный "кирпичик" для построения микросхем логики, памяти, процессора и т. п. Размеры современных МОПТ составляют от 90 до 8 нм. В настоящее время на одном современном кристалле площадью 1-2 смІ могут разместиться несколько (пока единицы) миллиардов МОПТ. На протяжении 60 лет происходит уменьшение размеров (миниатюризация) МОПТ и увеличение их количества на одном чипе (степень интеграции), в ближайшие годы ожидается дальнейшее увеличение степени интеграции транзисторов на чипе. Уменьшение размеров МОПТ приводит также к повышению быстродействия процессоров, снижению энергопотребления и тепловыделения.

В настоящее время микропроцессоры Intel собираются на трёхмерных транзисторах (3d транзисторы) именуемых Tri-Gate. Эта революционная технология позволила существенно улучшить существующие характеристики процессоров. Отметим, что переход к 3D-транзисторам при технологическом процессе 22 нм позволил повысить производительность процессоров на 30 % (по оценкам Intel) и снизить энергопотребление. Примечательно, что затраты на производство возрастут всего на 2-3 %, то есть в магазинах новые процессоры не будут значительно дороже старых. Суть технологии в том, что теперь сквозь затвор транзистора проходит особый High-K диэлектрик, который снижает токи утечки.

Делись добром ;)