6.2.1. Метод доступа csma/cd
В сетях Ethernet используется метод доступа к среде передачи данных, называемый методом коллективного доступа с опознаванием несущей и обнаружением коллизий (carrier-sense-multiply-access with collision detection, CSMA/CD).
Этот метод используется исключительно в сетях с общей шиной (к которым относятся и радиосети, породившие этот метод). Все компьютеры такой сети имеют непосредственный доступ к общей шине, поэтому она может быть использована для передачи данных между любыми двумя узлами сети. Простота схемы подключения - это один из факторов, определивших успех стандарта Ethernet. Говорят, что кабель, к которому подключены все станции, работает в режиме коллективного доступа (multiply-access,MA).
Все данные, передаваемые по сети, помещаются в кадры определенной структуры и снабжаются уникальным адресом станции назначения. Затем кадр передается по кабелю. Все станции, подключенные к кабелю, могут распознать факт передачи кадра, и та станция, которая узнает собственный адрес в заголовках кадра, записывает его содержимое в свой внутренний буфер, обрабатывает полученные данные и посылает по кабелю кадр-ответ. Адрес станции-источника также включен в исходный кадр, поэтому станция-получатель знает, кому нужно послать ответ.
При описанном подходе возможна ситуация, когда две станции одновременно пытаются передать кадр данных по общему кабелю. Для уменьшения вероятности этой ситуации непосредственно перед отправкой кадра передающая станция слушает кабель (то есть принимает и анализирует возникающие на нем электрические сигналы), чтобы обнаружить, не передается ли уже по кабелю кадр данных от другой станции. Если опознается несущая (carrier-sense, CS), то станция откладывает передачу своего кадра до окончания чужой передачи, и только потом пытается вновь его передать. Но даже при таком алгоритме две станции одновременно могут решить, что по шине в данный момент времени нет передачи, и начать одновременно передавать свои кадры. Говорят, что при этом происходит коллизия, так как содержимое обоих кадров сталкивается на общем кабеле, что приводит к искажению информации.
Чтобы корректно обработать коллизию, все станции одновременно наблюдают за возникающими на кабеле сигналами. Если передаваемые и наблюдаемые сигналы отличаются, то фиксируется обнаружение коллизии (collision detection, CD). Для увеличения вероятности немедленного обнаружения коллизии всеми станциями сети, ситуация коллизии усиливается посылкой в сеть станциями, начавшими передачу своих кадров, специальной последовательности битов, называемой jam-последовательностью.
Метод CSMA/CD определяет основные временные и логические соотношения, гарантирующие корректную работу всех станций в сети:
Между двумя последовательно передаваемыми по общей шине кадрами информации должна выдерживаться пауза в 9.6 мкс; эта пауза нужна для приведения в исходное состояние сетевых адаптеров узлов, а также для предотвращения монопольного захвата среды передачи данных одной станцией.
При обнаружении коллизии (условия ее обнаружения зависят от применяемой физической среды) станция выдает в среду специальную 32-х битную последовательность (jam-последовательность), усиливающую явление коллизии для более надежного распознавания ее всеми узлами сети.
После обнаружения коллизии каждый узел, который передавал кадр и столкнулся с коллизией, после некоторой задержки пытается повторно передать свой кадр. Узел делает максимально 16 попыток передачи этого кадра информации, после чего отказывается от его передачи. Величина задержки выбирается как равномерно распределенное случайное число из интервала, длина которого экспоненциально увеличивается с каждой попыткой. Такой алгоритм выбора величины задержки снижает вероятность коллизий и уменьшает интенсивность выдачи кадров в сеть при ее высокой загрузке.
С увеличением скорости передачи кадров, что имеет место в новых стандартах, базирующихся на том же методе доступа CSMA/CD, например, Fast Ethernet, максимальная длина сети уменьшается пропорционально увеличению скорости передачи. В стандарте Fast Ethernet она составляет 210 м, а в гигабитном Ethernet ограничена 25 метрами.
Независимо от реализации физической среды, все сети Ethernet должны удовлетворять двум ограничениям, связанным с методом доступа:
максимальное расстояние между двумя любыми узлами не должно превышать 2500 м,
в сети не должно быть более 1024 узлов.
- Введение.
- Классификация информацинно-вычислительных сетей.
- Преимущества компьютерных сетей.
- Основные компоненты сети.
- Архитектура «клиент-сервер».
- Одноранговые сети.
- Топологии сетей.
- 1.2.1 Элементы передачи данных.
- 1.2.2 Протоколы обмена данными.
- 1.2.3 Кодирование сообщений.
- 1.2.4 Формат кадра.
- 1.3.1Протоколы передачи данных.
- 1.3.2 Физическая адресация.
- 1.3.3 Обмен данными в Ethernet.
- 1.3.4 Иерархическая конструкция сетей Ethernet.
- 1.3.5Уровни иерархической сети.
- 1.4.1 Уровень доступа.
- 1.4.2 Функции концентраторов.
- 1.4.3 Функции коммутаторов.
- 1.4.4 Широковещательная рассылка сообщений.
- 1.5.1 Уровень распределения
- 1.5.2 Функции маршрутизаторов.
- 1.5.3 Шлюз по умолчанию.
- 1.5.4 Таблицы маршрутизации.
- 1.5.5 Локальная сеть (лвс).
- 1.5.6 Масштабируемость сети.
- 1.6.1 Проектирование сети Ethernet.
- 1.6.2 Моделирование сети.
- 2. Глобальная сеть Интернет.
- 2.1.1Интернет-провайдеры.
- 2.1.2 Точка присутствия.
- 2.1.3 Способы подключения.
- 2.1.4 Услуги Интернет-провайдеров.
- 2.2.1 Интернет протокол ip.
- 2.2.2 Обработка пакетов данных.
- 2.2.3 Передача данных в Интернет.
- 2.3.1 Варианты представления сети интернет.
- 2.3.2 Устройства в сети Интернет.
- 2.4.1 Каналы передачи данных.
- 2.4.2 «Витая пара».
- 2.4.3 Коаксиальный кабель.
- 2.4.4 Оптоволоконные кабели.
- 2.5.1 Стандарты прокладки кабелей.
- 2.5.2 Прокладка сетей на основе кабеляUtp.
- 3. Сетевая адресация.
- 3.1.1 ФункцииIp-адресов.
- 3.1.2 Структура ip-адреса.
- 3.2.1 Классификация ip-адресов.
- 3.2.2 Общие и частныеIp-адреса.
- 3.2.3 Виды рассылок.
- 3.3.1 Присвоение статического и динамического адреса
- 3.3.2 Серверы dhcp.
- 3.3.3 Настройка dhcp.
- 3.4.1 Шлюз по умолчанию.
- 3.4.2 Присвоение адреса.
- 3.4.3 Преобразование сетевых адресов.
- 4.Сетевые службы.
- 4.1.1 Взаимодействие клиента и сервера.
- 4.1.2 Протоколы взаимодействия.
- 4.1.3 Транспортные протоколы tcp и upd.
- 4.1.4 Распределение портовTcp/ip.
- 4.2.1 Служба доменных имен (dns).
- 4.2.4 Почтовые клиенты и серверы.
- Интернет телефония.
- 4.2.7 Распределение портов.
- 4.3.1 Взаимодействие протоколов.
- 4.3.2 Модель взаимодействия открытых систем (osi).
- 5. Беспроводные технологии.
- 5.1.1 Беспроводные технологии и устройства.
- 5.1.2 Преимущества и ограничения беспроводной технологии.
- 5.1.3 Типы беспроводных сетей.
- 5.2.1 Стандарты беспроводных сетей.
- 5.2.2 Компоненты беспроводной локальной сети.
- 5.2.3 Идентификатор набора служб ssid.
- 5.2.4 Беспроводные каналы.
- 5.3.1 Атака беспроводных локальных сетей (wlan).
- 5.3.2 Ограничение доступа в сети wlan.
- 5.3.3 Аутентификация в сети wlan.
- 5.3.4 Шифрование в сети wlan.
- 5.4.1 Планирование сети wlan.
- 5.4.1 Установка и обеспечение безопасности точки доступа.
- 6. Локальные вычислительные сети
- 6.1 Методы доступа
- 6.2. Технология Ethernet
- 6.2.1. Метод доступа csma/cd
- 6.2.2. Спецификации физической среды Ethernet
- 6.3. Основные характеристики стандарта Token Ring
- 6.3.1. Маркерный метод доступа к разделяемой среде
- 6.4. Fast Ethernet как развитие классического Ethernet'а
- 6.5. Технология Gigabit Ethernet
- 6.6. Основы технологии fddi
- 6.7. Общая характеристика технологии 100vg-AnyLan
- Сетевые операционные системы
- Назначение операционных систем
- Требования операционной системы
- Выбор операционной системы
- Виды конференцсвязи
- Система конференцсвязи HiPath daks
- Документальная телеконференция
- Web технологии
- Библиографический список:
- Лебедев владимир борисович, дегтярев алексей андреевич