Электронные вычислительные машины
Первая ЭВМ на основе электронных вакуумных ламп с нитью накаливания была создана по заказу артиллеристов в Пенсильванском университете в 1946 году – это машина ENIAC (Electronic Numeral Integrator and Computer).
Рисунок 2.6 ЭВМ ENIAC
На роль первой вычислительной машины также претендуют созданные в 1943 году вычислитель Collosus, разработанный под руководством Макса Ньюмена и при участии Алана Тьюринга, а также специализированный электронный калькулятор Джорджа Атанасова - ABC (Atanasoff Berry Computer). Это были вычислительные машины с программным управлением, но программа набиралась в них путем шнуровой коммутации, как в табуляторах (рис.2.5).
Рисунок 2. 7 Набор программы в машине ENIAC
В середине 40-х годов появились теоретические разработки, указывающие, что более эффективными могут быть машины с хранимой программой. По этому направлению следует отметить в первую очередь концепцию, выдвинутую в 1944 году американским инженером Дж. Эккертом, легшим в основу рекомендаций Норберта Винера и Джона фон Неймана3.
Рекомендации по созданию эффективных электронных вычислительных машин были изложены Винером в его книге «Кибернетика». Винер написал: «В настоящее время существует два типа вычислительных машин:
машины, подобные дифференциальному анализатору Буша, именуемые аналоговыми машинами. В них данные изображаются величинами, измеряемыми по какой либо непрерывной шкале, так что точность машины определяется точностью построения этой шкалы.
машины, подобные обычному арифмометру, которые называются цифровыми машинами; в них данные изображаются серией выборов из нескольких возможностей, а точность определяется четкостью различения отдельных возможностей при каждом выборе и числом сделанных выборов».
Н.Винер писал: «Мы видим, что для точных вычислений цифровые машины, во всяком случае, лучше, а из них - лучше всего машины с двоичной системой, у которой при каждом выборе представляется лишь две возможности. Употребление нами машин с десятичной шкалой обусловлено просто той исторической случайностью, что десятичная система, основанная на числе пальцев, уже была в употреблении, когда индусы сделали свое великое открытие, выявив значение нуля и преимущество позиционной системы счисления» [с.148]. И чуть дальше: «В случае идеальной вычислительной машины все данные должны быть введены в машину в начале работы, и затем она должна по возможности быть свободна от человеческого вмешательства до конца работы. Это означает, что в машину должны быть введены вначале не толь все цифровые данные, но и все правила их сочетания в виде инструкций, учитывающих любую ситуацию, которая может возникнуть в ходе вычислений. Поэтому вычислительная машина должна быть не только арифметической, но также и логической машиной, и должна комбинировать возможности согласно систематическому алгоритму. Существует много алгоритмов, которые можно использовать для комбинирования возможностей; но простейший из них известен как алгебра логики, или булева алгебра» [с.149].
Ш
Рисунок 2.8 Дж. Фон Нейман
ироко известная концепция построения ЭВМ, предложенная профессором Принстонского института Дж. фон Нейманом (рис. 2.6) во многом перекликается с концепцией Винера. Основные принципы Дж. фон Неймана организации ЭВМ:1. Принцип двоичного кодирования. Электронные машины должны работать не в десятичной, а в двоичной системе счисления.
2. Принцип программного управления. Машина выполняет вычисления по программе. Программа состоит из набора команд, которые исполняются автоматически друг за другом в определенной последовательности.
3. Принцип хранимой программы. В процессе решения задачи, программа ее исполнения должна размещаться в запоминающем устройстве машины, обладающем высокой скоростью выборки и записи.
4. Принцип однотипности представления чисел и команд. Программа, так же как и числа, с которыми оперирует машина, записываются в двоичном коде. По форме представления команды и числа однотипны, а это дает возможность машине исполнять операции над командами программы.
5. Принцип иерархичности памяти. Трудности реализации единого емкого быстродействующего запоминающего устройства требует иерархического построения памяти. По меньшей мере должно быть два уровня иерархии: основная память и внешняя память.
6. Принцип адресности основной памяти. Основная память должна состоять из пронумерованных ячеек, каждая из которых доступна программе в любой момент времени по ее двоичному адресу или по присвоенному ей имени (имя ячейке присваивается в программе, и соответствующий этому имени адрес должен храниться в основной памяти на протяжении всего времени выполнения программы).
Структура ЭВМ, предложенная Дж. фон Нейманом, должна содержать следующие устройства: управляющее устройство, арифметическое устройство, основную (оперативную) память, внешнюю память, устройство ввода программ и данных, устройство вывода результатов расчетов, пульт ручного управления (рис. 2.7).
Рисунок 2.9 Структура фон-Неймановской ЭВМ
Рекомендации Винера и Неймана быстро нашли свое воплощение в новых ЭВМ, созданных уже в конце сороковых – начале пятидесятых годов. В первую очередь следует отметить американские ЭВМ: ЭДСАК, СЕАК, ЭДВАК и первые, поступившие в открытую продажу в 1949 г, серийные машины с хранимой программой UNIVAC - UNIVersal Automatic Computer (рис. 2.8) и IBM 701.
Рисунок 2.10 Машина UNIVAC
Основные характеристики компьютера UNIVAC:
Ввод данных - с магнитной ленты, емкостью 1,4 Мб и с перфокарт.
Машинное слово — 78 бит, емкость ОЗУ — 1000 слов, для хранения которых использовалось 100 ртутных линий задержки (ЛЗ) с обратной связью (импульсы с выхода ЛЗ подаются обратно на ее вход, и таким образом машинное слово непрерывно циркулирует по линии задержки).
Производительность: сложение за 500 мкс, умножение за 2,5 мс. Имелся контроль достоверности преобразований информации, основанный на сравнении результатов работы наиболее важных з адублированных схем и на контроле четности.
В
Рисунок 2.11 С.А.Лебедев
начале 50-х к американским машинам присоединились и советские ЭВМ. Основоположник компьютерной техники в СССР академик Сергей Александрович Лебедев (рис.2.9), под руководством которого было создано около 10 типов ЭВМ. Первой по заказу атомщиков в 1951 голу в Киеве под его руководством была создана первая отечественная машина МЭСМ (Малая Электронная Счетная Машина); в 1952 году машина БЭСМ (Быстродействующая ЭСМ, имевшая позже продолжения: БЭСМ 2, БЭСМ 4, БЭСМ 6 – рис. 2.10).
Рисунок 2.12 Машина БЭСМ 6
Популярная машина БЭСМ 2 (рис. 2.11) имела следующие характеристики:
Разрядность машины - 39 бит.
Разрядность числа с плавающей запятой: мантисса — 32 бита, порядок — 5 бит, 1 бит знак мантиссы и 1 бит знак порядка.
Диапазон чисел от 10-9 до 109.
Формат с фиксированной запятой для дробных чисел, меньше 1.
Двоично-кодированное представления десятичных чисел.
Быстродействие – до 10000 операций в секунду.
Одно-, двух- , трехадресные и безадресные команды. Разрядность адресов — 11 бит, кода операции — 6 бит.
Количество команд - 32: 9 арифметических операций, 6 логических операций, 8 – передачи кодов, 9 операций управления.
Запоминающие устройства:
ОЗУ на ферритовых сердечниках емкостью 2048 39-разрядных чисел со временем обращения 10 мкс.
ОЗУ на магнитных барабанах: 2 барабана по 5000 чисел со средним временем доступа 40 мс и скоростью считывания 800 чисел/с.
ВЗУ на магнитных лентах: 4 шт. по 30000 чисел со скоростью считывания 400 чисел/с.
Скорость ввода с перфоленты – 20 кодов/с, скорость печати – 20 чисел/с
Машина содержала 4000 электронных ламп, 5000 полупроводниковых диодов, 200000 ферритовых сердечников. Потребляемая мощность – 35 Квт (без мощности вентиляторов).
ПРИМЕЧАНИЕ
В составе большинства указанных ЭВМ можно назвать и различные их модификации. Так, машины «Минск» — одни из лучших отечественных ЭВМ того времени имели модели: «Минск 1», «Минск 2», «Минск 22», «Минск 23», «Минск 32». Следует также отметить одну из немногих машин, полностью основанных на отечественной разработке, интересную ЭВМ «Рута-110», не получившую широкого распространения из-за специфического программного обеспечения.
Рисунок 2.13 Блок-схема БЭСМ 2
В пятидесятые–шестидесятые годы 20 века были разработаны еще более десятка советских ЭВМ: «Стрела», «Урал», «Минск», М-20, М-220 и др. У истоков создания советской вычислительной техники стояли крупные отечественные ученые: Б.И. Рамеев, Ю.А. Базилевский, И.С. Брук, А.А. Ляпунов, Б.Н. Наумов, В.М. Глушков (директор Киевского института кибернетики - рис. 2.12). Глушков В.М. является автором семейств ЭВМ «Мир» и «Днепр», популярной в 1960-е годы программы «АСУпизации всей страны» - программы массовой разработки автоматизированных систем управления.
- Введение
- Раздел «Создание и эволюция эвм» Глава 1. Научные предпосылки создания эвм
- Управление и информация
- Информация и ее свойства
- Экономическая информация
- Три формы адекватности информации
- Меры информации
- Синтаксические меры информации
- Семантическая мера информации
- Прагматическая мера информации
- Показатели качества информации
- Репрезентативность
- Содержательность
- Достаточность
- Доступность
- Актуальность
- Своевременность
- Точность
- Достоверность
- Устойчивость
- Защищенность
- Полезность
- Информатика
- Наука информатика
- Информационные технологии
- Индустрия информатики
- Вопросы для самопроверки
- Глава 2. История создания вычислительной техники
- Механические счетные машины
- Электромеханические счетные машины
- Электронные вычислительные машины
- Вопросы для самопроверки
- Глава 3. Эволюция эвм
- Вопросы для самопроверки
- Глава 4. Основные классы вычислительных машин
- Большие компьютеры
- Серверы и рабочие станции
- Рабочие станции
- Серверы
- Малые компьютеры
- Микрокомпьютеры
- Персональные компьютеры
- Наколенные компьютеры
- Компьютеры-блокноты (ноутбуки)
- Нетбуки
- Планшетные компьютеры
- Райтеры
- Электронные книги Ридеры
- Карманные компьютеры
- Периферийные устройства кпк
- Коммуникаторы (смартфоны)
- Электронные секретари
- Электронные записные книжки
- Вычислительные системы
- Многомашинные и многопроцессорные вс
- Высокопараллельные многопроцессорные вычислительные системы
- Ассоциативные и потоковые вс
- Ассоциативные вычислительные системы
- Потоковые вычислительные системы
- Суперкомпьютеры
- Кластерные суперкомпьютеры
- Вопросы для самопроверки
- Раздел 2. «Информационно-логические основы построения эвм» Глава 5. Представление информации в эвм
- Представление чисел с фиксированной и плавающей запятой
- Алгебраическое представление двоичных чисел
- Прочие системы счисления
- Двоично-десятичная система счисления
- Шестнадцатеричная система счисления
- Выполнение арифметических операций в компьютере
- Особенности выполнения операций над числами с плавающей запятой
- Выполнение арифметических операций над числами, представленными в дополнительных кодах
- Особенности выполнения операций в обратных кодах
- Выполнение арифметических операций в шестнадцатеричной системе счисления
- Особенности представления информации в пк
- Вопросы для самопроверки
- Глава 6. Логические основы построения эвм
- Основы алгебры логики
- Логический синтез вычислительных схем
- Электронные технологии и элементы
- Полевые транзисторы
- Планарные микросхемы
- Электронные и логические схемы
- Триггер
- Регистр
- Дешифратор
- Логические операции, выполняемые в компьютере
- Or (или) — логическое сложение
- Xor (исключающее или)
- Not (не) — операция отрицания
- Вопросы для самопроверки
- Раздел 3 Архитектура персонального компьютера Глава 7. Основные блоки эвм и их назначение
- Структурная схема эвм
- Микропроцессор
- Системная шина
- Основная память
- Внешняя память
- Источник питания
- Внешние устройства
- Дополнительные интегральные микросхемы
- Элементы конструкции пк
- Функциональные характеристики эвм
- Производительность, быстродействие, тактовая частота
- Разрядность микропроцессора и кодовых шин интерфейса
- Типы системного и локальных и внешних интерфейсов
- Емкость оперативной памяти
- Виды накопителей на жестких магнитных дисках
- Тип и емкость накопителей на гибких магнитных дисках
- Наличие, виды и емкость кэш-памяти
- Аппаратная и программная совместимость с другими типами компьютеров
- Возможность работы в многозадачном режиме
- Надежность
- Глава 8. Микропроцессоры
- Микропроцессоры типа cisc
- Микропроцессоры Over Drive
- Микропроцессоры Pentium
- Микропроцессоры Pentium Pro
- Микропроцессоры Pentium mmx и Pentium II
- Микропроцессоры Pentium III
- Микропроцессоры Pentium 4
- Эффективные технологии в мп Intel
- Архитектура Intel Net Burst
- Многоядерные микропроцессоры
- Микропроцессоры линейки core
- Процессоры Core Penryn
- Микропроцессоры типа risc
- Микропроцессоры типа vliw
- Физическая и функциональная структура микропроцессора
- Устройство управления
- Арифметико-логическое устройство
- Микропроцессорная память
- Универсальные регистры
- Сегментные регистры
- Регистры смещений
- Регистр флагов
- Статусные флаги
- Управляющие флаги
- Интерфейсная часть мп
- Вопросы для самопроверки
- Глава 9. Системные платы и чипсеты
- Разновидности системных плат
- Чипсеты системных плат
- Чипсет i965 (Broadwater)
- Глава 10. Интерфейсная система пк
- Шины расширений
- Локальные шины
- Интерфейсы pci
- Интерфейс agp
- Периферийные шины
- Интерфейсы ide/ata
- Интерфейс scsi
- Интерфейс rs 232
- Интерфейс ieee 1284
- Универсальные последовательные интерфейсы
- Последовательная шина usb
- Стандарт ieee 1394
- Последовательный интерфейс sata
- Последовательный интерфейс sas
- Семейство последовательных интерфейсов pci Express
- Прикладные программные интерфейсы
- Беспроводные интерфейсы
- Интерфейсы IrDa
- Интерфейс Bluetooth
- Интерфейс wusb
- Семейство интерфейсов WiFi
- Семейство интерфейсов WiMax
- Интерфейс WiBro
- Прочие интерфейсы
- Вопросы для самопроверки
- Глава 11. Основная память пк
- Статическая и динамическая оперативная память
- Основная память
- Физическая структура основной памяти
- Оперативные запоминающие устройства
- Виды модулей оперативной памяти
- Типы оперативной памяти
- Постоянные запоминающие устройства
- Логическая структура основной памяти
- Вопросы для самопроверки
- Глава12. Внешние запоминающие устройства
- Размещение информации на дисках
- Адресация информации на диске
- Накопители на жестких магнитных дисках
- 0,85" Винчестеры Toshiba
- Дисковые массивы raid
- Накопители на гибких магнитных дисках
- Накопители на оптических дисках
- Неперезаписываемые оптические диски cd-rom
- Оптические диски с однократной записью
- Оптические диски с многократной записью
- Оптические универсальные диски dvd
- Маркировка скоростных характеристик cd и dvd
- Эффективные технологии хранения информации на cd и dvd
- Многослойный cd
- Millipede-диск
- Флуоресцентные оптические диски
- Особенности организации флуоресцентных дисков
- Прочие технологии
- Накопители на магнитооптических дисках
- Накопители на магнитной ленте
- Устройства флэш-памяти
- Твердотельные накопители на базе флэш-памяти
- Вопросы для самопроверки
- Глава 13. Видеотерминальные устройства
- Видеомониторы на элт
- Монохромные мониторы
- Цветные мониторы
- Виды развертки изображения на мониторе
- Цифровые и аналоговые мониторы
- Размер экрана монитора
- Вертикальная (кадровая) развертка
- Строчная развертка
- Разрешающая способность мониторов
- Частотная полоса пропускания
- Эргономичность электронно-лучевых мониторов
- Видеомониторы на плоских панелях
- Мониторы на жидкокристаллических индикаторах
- Tmos – мониторы
- Плазменные мониторы
- Электролюминесцентные мониторы
- Светоизлучающие мониторы
- Мониторы на основе «электронной бумаги»
- Стереомониторы
- Видеоконтроллеры
- Вопросы для самопроверки
- Глава 14. Внешние устройства пк
- Клавиатура
- Графический манипулятор мышь
- Принтеры
- Матричные принтеры
- Струйные принтеры
- Лазерные принтеры
- Термопринтеры
- Твердочернильные принтеры
- Сервисные устройства
- Сетевые принтеры
- С канеры
- Типы сканеров
- Форматы представления графической информации в пк
- Форматы растровой графики
- Д игитайзеры
- Основные характеристики дигитайзеров
- Плоттеры
- Типы плоттеров
- Вопросы для самопроверки
- Глава 15. Средства мультимедиа
- Системы речевого ввода и вывода информации
- Системы распознавания речи
- Системы, ориентированные на распознавание отдельных слов, команд и вопросов
- Системы распознавания предложений и связной речи
- Системы идентификации по образцу речи
- Механизм распознавания речи
- Системы синтеза речи
- Компьютерные средства обеспечения звуковых технологий
- Звуковые платы (карты)
- Компьютерные средства обеспечения видеотехнологий
- Вопросы для самопроверки
- Раздел 4. Компьютерные сети Глава 16. Основы построения компьютерных сетей
- Классификация и архитектура компьютерных сетей
- Виды компьютерных сетей
- Модель взаимодействия открытых систем
- Локальные вычислительные сети
- Виды локальных вычислительных сетей
- Одноранговые локальные сети
- Серверные локальные сети
- Корпоративные компьютерные сети
- Глобальная информационная сеть Интернет
- Протоколы, используемые в сети
- Программное обеспечение компьютерных сетей
- Информационное обеспечение сетей
- Вопросы для самопроверки
- Глава 17.Техническое обеспечение компьютерных сетей
- Серверы и рабочие станции
- Рабочие станции
- Серверы
- Маршрутизаторы и коммутирующие устройства
- Методы коммутации
- Коммутация сообщений
- Коммутация пакетов
- Методы маршрутизации
- Варианты адресации компьютеров в сети
- Методы маршрутизации, используемые в сетях
- Модемы и сетевые карты
- Модемы для аналоговых каналов связи
- Протоколы передачи данных
- Модемы для цифровых каналов связи
- Сетевые карты
- Линии и каналы связи
- Цифровые каналы связи
- Раздел 5. Программное управление Глава 18. Программное управление — основа автоматизации вычислительного процесса После изучения главы вы должны знать:
- Алгоритмы и языки программирования
- Состав машинных команд
- Пример программы на яск
- Программное обеспечение компьютера
- Системное программное обеспечение
- Операционные системы компьютеров
- Прикладное программное обеспечение
- Прикладные программы для офиса
- Корпоративные прикладные программы
- Режимы работы компьютеров
- Однопрограммный режим
- Многопрограммный режим
- Система прерываний программ в пк
- Адресация регистров и ячеек памяти в пк
- Относительная адресация
- Стековая адресация
- Вопросы для самопроверки
- Глава 19.Элементы программирования на языке Ассемблер
- Основные компоненты языка ассемблер Алфавит языка
- Константы (числа и строки) Только целые числа
- Строки (литералы)
- Команды (операторы)
- Директивы (псевдооператоры)
- Модификаторы
- Адресация регистров и ячеек памяти в Ассемблере
- Непосредственная адресация
- Прямая адресация регистров мпп
- Адресация ячеек оп
- Основные команды языка ассемблер
- Команды пересылки данных
- Арифметические команды
- Команды сложения, вычитания и сравнения
- Команды приращения
- Команды умножения
- Команды деления
- Логические команды
- Команды безусловной передачи управления
- Команды перехода к подпрограмме и выхода из подпрограммы
- Команда перехода к подпрограмме: call opr
- Команда выхода из подпрограммы
- Команды условной передачи управления
- Команды условной передачи управления для беззнаковых данных
- Команды условной передачи управления для знаковых данных
- Команды условной передачи управления для прочих проверок
- Команды управления циклами
- Команды прерывания
- Основные директивы ассемблера
- Директивы определения идентификаторов
- Директивы определения данных
- Директивы определения сегментов и процедур
- Директивы управления трансляцией
- Программирование процедур работы с устройствами ввода-вывода
- Программирование работы с дисплеем
- Видеооперации с прерыванием 21h dos
- Программирование работы с клавиатурой
- Некоторые аспекты создания исполняемых программ
- Процедуры формирования программы
- Структура программы на языке ассемблера для создания файла exe
- Программа вычисления квадратного корня
- Основные сведения о листинге программы
- Последовательность работы пк при выполнении программы
- Краткие сведения об отладчике программ debug
- Основные команды отладчика debug
- Вопросы для самопроверки
- Заключение. Перспективы развития информационных систем
- Литература