logo
Шпоры ALL

17.2 Использование интерполирования при решении различных задач и реализация в среде MathCad

У нас задачи интерполирования заключались в том, чтобы в узлах совпадало только значение функции. Понятно, что аналогичную задачу можно сформулировать выдвигая требования, чтобы в узлах совпадали ешё и значения производных. Если говорить только о первых производных, то задача решается с помощью полином Эрмита, которые будут аналогами базисных функций. Кроме того в некоторых ситуациях нужно выполнять интерполяцию для функции нескольких переменных.

Идея интерполирования лежит в основе многих методов приближенных вычислений:

1) приближенные вычисления функции

2) численное интегрирование

Т.е. подинтегрированную функцию f(x) заменяют интерполяционным полиномом, а затем от него вычисляется определенный интеграл. Операция приближенного интегрирования основана на этом подходе достаточна точна.

Тоже справедливо и для функций заданных таблично:

3) Численное дифференцирование

К сожалению эта операция имеет приближенную точность:

4) Численное решение

алгебраических и тангенциальных уравнений:

Пусть исходная функция f(x) задана аналитически на интервале [a,b] и её значения могут быть вычислены в нужных точках. Пусть f(x)=0 – корень этого уравнения уединен на интервале [a,b], тогда по значениям этой функции в узлах строят интерполяционный полином, находят его корень на этом интервале и считают, что он приблизительно равен корню уравнения на этом интервале.