41. Аналитическая модель поверхности
Аналитической моделью называется описание поверхности математическими формулами:
z=f(x,y) — описание с помощью функции,
F(x,y,z)=0 — описание с помощью неявного уравнения.
Зачастую используется параметрическая форма описания поверхности:
где s и t — параметры, которые изменяются в определенном диапазоне, а функции Fx, Fy и Fz определяют форму поверхности.
Преимущество параметрической формы заключается в легкости описания поверхностей, которые отвечают неоднозначным функциям, и замкнутых поверхностей.
Параметрическое описание можно задать таким образом, что формула не будет существенно изменяться (усложняться) при поворотах поверхности, и ее масштабировании. В качестве примера рассмотрим аналитическое описание поверхности шара.
— явная функция двух аргументов, |
x2 + y2 + z2 -R2 = 0 — неявное уравнение, |
x = R sin s cos t, y = R sin s sin t, z = R cos s — в параметрической форме. |
Для описания сложных поверхностей часто используют сплайны. Сплайн — это специальная функция для аппроксимации отдельных фрагментов поверхности. Несколько сплайнов образуют модель сложной поверхности. Иными словами, сплайн — это тоже поверхность, но такая, для которой можно достаточно просто вычислять координаты ее точек. В трехмерной графике обычно используют кубические сплайны по двум основным причинам:
— третья степень — наименьшая из степеней, позволяющих описывать любую форму;
— при стыковке сплайнов можно обеспечить непрерывную первую производную — такая поверхность будет без изломов в местах стыка.
Сплайны, как правило, задают параметрически.
Рассмотрим одну из разновидностей сплайнов — сплайн Безье. В обобщенной форме (степени m*n):
где Pij — опорные точки-ориентиры, 0 £ s £ 1, 0 £ t £ 1, Cmi и Cnj — коэффициенты бинома Ньютона, которые рассчитываются по формуле
Кубический сплайн Безье соответствует значениям m=3, n=3. Для его определения необходимо 16 точек-ориентиров Pij; коэффициенты Cmi и Cnj равны 1, 3, 3, 1 при i, j = 0, 1, 2, 3.
Аналитическая модель наиболее пригодна для многих операций анализа поверхностей.
Достоинства модели (с позиций КГ):
● легкость расчета координат каждой точки поверхности, нормали;
● небольшой объем данных для описания достаточно сложных форм.
Недостатки:
● сложность формул описания с использованием функций, которые медленно вычисляются на компьютере, снижают скорость выполнения операций отображения;
● невозможность в большинстве случаев применить данную форму описания непосредственно для изображения поверхности - поверхность отображается как многогранник, координаты вершин и граней которого рассчитываются в процессе отображения, что уменьшает скорость сравнительно с полигональной моделью описания.
- Компьютерная графика.
- 2. Задачи кг.
- Графические функции примитивов.
- 4. Вывод текста.
- 5. Понятие холста.
- 6. Графические примитивы
- 7. Базовые компоненты
- 9. Метрическое пространство
- 10) Двумерные аффинные преобразования координат.
- Поворот Rotate
- Тражение Reflection
- Сдвиг (Деформация)
- Растяжение и сжатие
- 16. Окно и область вывода.
- 17. Растровая графика, общие сведения
- Достоинства и недостатки растровой графики
- 18. Цвет в растре. Модель rgb.Кодировка цвета и яркости.
- 19. Цвет в растре. Модель cmy.
- 20. Растровые дисплеи.
- 23. Системы с телевизионным растром
- 24. Видеоадаптер
- 25.Дисплеи с регенерацией
- 26. Понятие фрактала и фрактальной графики.
- 27. Построение линий на растре.
- 28. Алгоритм Брезенхэма
- 29. Векторная графика: назначение, элементы, структура.
- 30. Каноническое уравнение прямой.
- 31. Параметрическое уравнение прямой и уравнение в отрезках. Параметрические уравнения прямой
- 32. Алгоритм определения принадлежности точки внутренности треугольника
- 34. Кривая Безье. Геометрическая интерпретация.
- 35. Раскраска на основе растровой развертки.
- 36. Заливка области с затравкой
- 0.5.1 Простой алгоритм заливки
- 37. Понятие точки схода.
- 38. Перспективные преобразования: подходы и решения.
- 39. Видовое преобразование координат.
- 40. Перспективное преобразование координат.
- 41. Аналитическая модель поверхности
- Векторная полигональная модель
- 43. Равномерная сетка
- Неравномерная сетка. Изолинии