Форматы кадров технологии Ethernet
Стандарт технологии Ethernet, описанный в документе IEEE 802.3, дает описание единственного формата кадра уровня MAC. Так как в кадр уровня MAC должен вкладываться кадр уровня LLC, описанный в документе IEEE 802.2, то по стандартам IEEE в сети Ethernet может использоваться только единственный вариант кадра канального уровня, заголовок которого является комбинацией заголовков MAC и LLC подуровней.
Тем не менее на практике в сетях Ethernet на канальном уровне используются кадры 4-х различных форматов (типов). Это связано с длительной историей развития технологии Ethernet, насчитывающей период существования до принятия стандартов IEEE 802, когда подуровень LLC не выделялся из общего протокола и, соответственно, заголовок LLC не применялся.
Консорциум трех фирм Digital, Intel и Xerox в 1980 году представил на рассмотрение комитету 802.3 свою фирменную версию стандарта Ethernet (в которой был, естественно, описан определенный формат кадра) в качестве проекта международного стандарта, но комитет 802.3 принял стандарт, отличающийся в некоторых деталях от предложения DIX. Отличия касались и формата кадра, что породило существование двух различных типов кадров в сетях Ethernet.
Еще один формат кадра появился в результате усилий компании Novell по ускорению работы своего стека протоколов в сетях Ethernet.
И наконец, четвертый формат кадра стал результатом деятельности комитета 802.2 по приведению предыдущих форматов кадров к некоторому общему стандарту.
Различия в форматах кадров могут приводить к несовместимости в работе аппаратуры и сетевого программного обеспечения, рассчитанного на работу только с одним стандартом кадра Ethernet. Однако сегодня практически все сетевые адаптеры, драйверы сетевых адаптеров, мосты/коммутаторы и маршрутизаторы умеют работать со всеми используемыми на практике форматами кадров технологии Ethernet, причем распознавание типа кадра выполняется автоматически.
Ниже приводится описание всех четырех типов кадров Ethernet (здесь под кадром понимается весь набор полей, которые относятся к канальному уровню, то есть поля MAC и LLC уровней). Один и тот же тип кадра может иметь разные названия, поэтому ниже для каждого типа кадра приведено по нескольку наиболее употребительных названий:
кадр 802.3/LLC (кадр 802.3/802.2 или кадр Novell 802.2);
кадр Raw 802.3 (или кадр Novell 802.3);
кадр Ethernet DIX (или кадр Ethernet II);
кадр Ethernet SNAP.
Форматы всех этих четырех типов кадров Ethernet приведены на рис. 3.6.
Выводы
Ethernet - это самая распространенная на сегодняшний день технология локальных сетей. В широком смысле Ethernet - это целое семейство технологий, включающее различные фирменные и стандартные варианты, из которых наиболее известны фирменный вариант Ethernet DIX, 10-мегабитные варианты стандарта IEEE 802.3, а также новые высокоскоростные технологии Fast Ethernet и Gigabit Ethernet. Почти все виды технологий Ethernet используют один и тот же метод разделения среды передачи данных - метод случайного доступа CSMA/CD, который определяет облик технологии в целом.
В узком смысле Ethernet - это 10-мегабитная технология, описанная в стандарте IEEE 802.3.
Важным явлением в сетях Ethernet является коллизия - ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Наличие коллизий - это неотъемлемое свойство сетей Ethernet, являющееся следствием принятого случайного метода доступа. Возможность четкого распознавания коллизий обусловлена правильным выбором параметров сети, в частности соблюдением соотношения между минимальной длиной кадра и максимально возможным диаметром сети.
На характеристики производительности сети большое значение оказывает коэффициент использования сети, который отражает ее загруженность. При значениях этого коэффициента свыше 50 % полезная пропускная способность сети резко падает: из-за роста интенсивности коллизий, а также увеличения времени ожидания доступа к среде.
Максимально возможная пропускная способность сегмента Ethernet в кадрах в секунду достигается при передаче кадров минимальной длины и составляет 14 880 кадр/с. При этом полезная пропускная способность сети составляет всего 5,48 Мбит/с, что лишь ненамного превышает половину номинальной пропускной способности - 10 Мбит/с.
Максимально возможная полезная пропускная способность сети Ethernet составляет 9,75 Мбит/с, что соответствует использованию кадров максимальной длины в 1518 байт, которые передаются по сети со скоростью 513 кадр/с.
При отсутствии коллизий и ожидания доступа коэффициент использования сети зависит от размера поля данных кадра и имеет максимальное значение 0,96.
Технология Ethernet поддерживает 4 разных типа кадров, которые имеют общий формат адресов узлов. Существуют формальные признаки, по которым сетевые адаптеры автоматически распознают тип кадра.
В зависимости от типа физической среды стандарт IEEE 802.3 определяет различные спецификации: 10Base-5, 10Base-2, 10Base-T, FOIRL, 10Base-FL, 10Base-FB. Для каждой спецификации определяются тип кабеля, максимальные длины непрерывных отрезков кабеля, а также правила использования повторителей для увеличения диаметра сети: правило «5-4-3» для коаксиальных вариантов сетей, и правило «4-х хабов» для витой пары и оптоволокна.
Для «смешанной» сети, состоящей из физических сегментов различного типа, полезно проводить расчет общей длины сети и допустимого количества повторителей. Комитет IEEE 802.3 приводит исходные данные для таких расчетов, в которых указываются задержки, вносимые повторителями различных спецификаций физической среды, сетевыми адаптерами и сегментами кабеля.
- Компьютерные сети и телекоммуникации
- 3Т Введение в вычислительные сети
- Способы соединения двух компьютеров для совместного использования файлов
- Среда и методы передачи данных в сетях эвм История развития вычислительных сетей
- Линии связи и каналы передачи данных
- Проводные линии связи
- Кабельные каналы связи
- Беспроводные (радиоканалы наземной и спутниковой связи) каналы связи
- Средства и методы передачи данных на физическом и канальном уровнях
- Методы передачи на канальном уровне
- Открытые системы и модель osі Протоколы, интерфейсы, стеки протоколов
- Протокол, интерфейс, стек протоколов
- Модель osі-iso
- Основные понятия лвс
- Рассмотрим более подробно классификацию лвс
- Основы локальных вычислительных сетей
- Сетевые топологии
- Шинная топология
- Топология типа “звезда”
- Топология “кольцо”
- Топология Token Ring
- Базовые технологии локальных сетей Методы доступа и протоколы передачи в лвс
- Методы доступа к среде передачи данных (методы доступа к каналам связи)
- Методы обмена данными в локальных сетях
- Централизованный доступ к моноканалу
- Децентрализованный доступ к моноканалу
- Сетевые технологии локальных сетей
- Сетевые технологии ieee802.3/Ethernet
- Время двойного оборота и распознавание коллизий
- Расчет pdv
- Расчет pw
- Максимальная производительность сети Ethernet
- Форматы кадров технологии Ethernet
- Сетевые технологии ieee802.5/Token-Ring Основные характеристики технологии
- Форматы кадров Token Ring
- Физический уровень технологии Token Ring
- Сетевые технологии ieee802.4/ArcNet
- Основные характеристики технологии
- Сравнение технологий и определение конфигурации
- Определение конфигурации сетей
- Основные программные и аппаратные компоненты лвс Многослойная модель сети
- Коммуникационное оборудование вычислительных сетей
- Программное обеспечение вычислительных сетей ( программные компоненты лвс)
- Автономные операционные системы
- Сетевые операционные системы
- Сетевые приложения
- Построение локальных сетей по стандартам физического и канального уровней
- Концентраторы и сетевые адаптеры
- Основные и дополнительные функции концентраторов
- Логическая структуризация сети с помощью мостов и коммутаторов
- Причины логической структуризации локальных сетей Ограничения сети, построенной на общей разделяемой среде
- Структуризация с помощью мостов и коммутаторов
- Принципы работы мостов Алгоритм работы прозрачного моста
- Мосты с маршрутизацией от источника
- Ограничения топологии сети, построенной на мостах
- Полнодуплексные протоколы локальных сетей Изменения в работе мас - уровня при полнодуплексной работе
- Проблема управления потоком данных при полнодуплексной работе
- Управления потоком кадров при полудуплексной работе
- Техническая реализация и дополнительные функции коммутаторов
- Коммутаторы на основе коммутационной матрицы
- Коммутаторы с общей шиной
- Коммутаторы с разделяемой памятью
- Комбинированные коммутаторы
- Конструктивное исполнение коммутаторов
- Характеристики, влияющие на производительность коммутаторов
- Скорость фильтрации и скорость продвижения
- Коммутация «на лету» или с буферизацией
- Размер адресной таблицы
- Объем буфера кадров
- Виртуальные локальные сети
- Типовые схемы применения коммутаторов в локальных сетях Сочетание коммутаторов и концентраторов
- Стянутая в точку магистраль на коммутаторе
- Распределенная магистраль на коммутаторах
- Сетевой уровень как средство построения больших сетей Принципы объединения сетей на основе протоколов сетевого уровня
- Ограничения мостов и коммутаторов
- Понятие internetworking
- Принципы маршрутизации
- Протоколы маршрутизации
- Функции маршрутизатора
- -Уровень интерфейсов
- -Уровень сетевого протокола
- -Уровень протоколов маршрутизации
- Реализация межсетевого взаимодействия средствами tcp/ip -Многоуровневая структура стека tcp/ip
- -Уровень межсетевого взаимодействия
- -Основной уровень
- -Прикладной уровень
- -Уровень сетевых интерфейсов
- -Соответствие уровней стека tcp/ip семиуровневой модели iso/osi
- Адресация в ip-сетях Типы адресов стека tcp/ip
- Классы ip-адресов
- Особые ip-адреса
- Использование масок в ip-адресации
- Автоматизация процесса назначения ip-адресов
- Отображение ip-адресов на локальные адреса
- Отображение доменных имен на ip-адреса Организация доменов и доменных имен
- Система доменных имен dns
- Глобальные сети
- Основные понятия и определения
- Обобщенная структура и функции глобальной сети Транспортные функции глобальной сети
- Высокоуровневые услуги глобальных сетей
- Структура глобальной сети
- Интерфейсы dte-dce
- Типы глобальных сетей
- Выделенные каналы
- Глобальные сети с коммутацией каналов
- Глобальные сети с коммутацией пакетов
- Магистральные сети и сети доступа
- Глобальные связи на основе выделенных линий
- Аналоговые выделенные линии Типы аналоговых выделенных линий
- Модемы для работы на выделенных каналах
- Цифровые выделенные линии
- Технология плезиохронной цифровой иерархии pdh
- Технология синхронной цифровой иерархии sonet/sdh
- Применение цифровых первичных сетей
- Устройства dsu/csu для подключения к выделенному каналу
- Протоколы канального уровня для выделенных линий
- Протоколы канального уровня для выделенных линий
- Протокол slip
- Протоколы семейства hdlc
- Протокол ppp
- Использование выделенных линий для построения корпоративной сети
- Компьютерные глобальные сети с коммутацией пакетов
- Сети х.25 Назначение и структура сетей х.25
- Адресация в сетях х.25
- Стек протоколов сети х.25
- Сети Frame Relay Назначение и общая характеристика
- Стек протоколов frame relay
- Поддержка качества обслуживания
- Использование сетей frame relay
- Технология атм
- Основные принципы технологии атм
- Стек протоколов атм
- Уровень адаптации aal
- Протокол атм
- Категории услуг протокола атм и управление трафиком
- Передача трафика ip через сети атм
- Использование технологии атм