Глава 2. Обеспечивающие подсистемы информационно-управляющих систем и их характеристики §2.1. Программное обеспечение управления процессами
На промышленных предприятиях управление непрерывными процессами осуществляется с использованием контроллеров, которые обслуживают не программисты, а технологи, хорошо знающие специфику объектов управления и технологического процесса.
Для описания процессов обычно используются такие языки, как язык релейно-контактных схем, функциональных блоков и так далее, теоретические основы которых взяты из методов автоматического управления. После появления программируемых устройств снижение сложности программирования стала одной из главных забот всех разработчиков.
Для удобства технологов программы стали представлять в графическом виде, привычном для проектировщиков АСУТП: релейно-контактных схем (RCS), функциональных блоковых диаграмм (FBD), (SFC). К концу 80-х годов, как вершина этого подхода, был разработан стандарт IEC1131-3. Опубликованный в 1988г, он включил в себя 5 языков технологического программирования: перечисленные выше графические плюс текстовые ST и IL. На момент своего принятия стандарт использовал современные технологии программирования и стал важным этапом развития языков технологического программирования, существенно облегчив разработчикам создание прикладных программ.
Важно отметить, что использование данного стандарта полностью соответствует концепции открытых систем, а именно, делает программу для контроллера независимой ни от конкретного оборудования, ни от типа процессора, ни от операционной системы, ни от плат ввода-вывода.
Основой современной системы технологического программирования являются:
– объектный подход;
– компонентная структура;
– технология «промежуточного слоя» с микроядром;
– непроцедурное программирование.
Объектный подход – мощная современная технология проектирования и программирования, разработанная в конце 80-х годов. К настоящему времени АСУТП в силу большой инерционности остается одной из наименее освоенных этой технологией областей. Он практически не используется в системах технологического программирования, а при организации управления «объектность» не поднимается выше уровня задвижки и регулятора. Преимущества объектного подхода в сравнении с функциональным доказаны как теоретически, так и практикой его использования.
В системе технологического программирования очень важны такие преимущества объектной технологии как естественный параллелизм описания процессов, легкость расширения набора функций без изменения структуры системы, простота расширения системы при увеличении объема автоматизации объекта, эффективность тиражирования на аналогичные объекты.
Компонентная структура – современная технология построения программной системы из набора типовых элементов (компонентов). Для всех компонентов разрабатывается единый протокол взаимодействия с исполняющей системой, пользователями и другими компонентами.
При программировании конкретного компонента достаточно описать внутреннюю логику его работы и реализацию указанного протокола, а все взаимодействия с окружением реализует исполняющая система. Использование технологии существенно сокращает сроки разработки и увеличивает надежность программного обеспечения.
Технология «промежуточного слоя» – современная технология, обеспечивающая высокую степень переносимости ПО путем создания в программной системе внутреннего системного слоя и максимальной локализации и стандартизации его взаимодействия с операционной системой.
Многослойная организация системы полностью изолирует технологическую логику работы прикладного ПО от используемых технических и низкоуровневых программных средств, обеспечивает высокую переносимость программного комплекса.
«Последним словом» данной технологии является использование виртуальных машин обеспечивающих максимальную переносимость программного кода.
Непроцедурные языки – современное направление системного программирования, позволяющее сконцентрировать внимание разработчика на описании целей и правил, а не на последовательности действий по их реализации. Использование непроцедурного языка обеспечивает максимально возможную простоту и понятность программ для разработчика-технолога, перенося сложности процедурной реализации на системный уровень, что сокращает трудоемкость и сроки разработки, увеличивает надежность ПО.
- Автоматизированные информационно-управляющие системы Учебное пособие
- Оглавление
- Часть I. Автоматизированные информационно-управляющие системы Основные понятия
- Глава 1. Информационно-управляющие системы реального времени §1.1. Особенности информационно-управляющих систем реального времени
- 1.1.1. Определение и основные характеристики информационно-управляющих систем реального времени
- 1.1.2. Операционные системы реального времени
- 1.1.3. Обзор систем реального времени
- §1.2. Построение информационно-управляющих систем реального времени на базе операционной системы qnx
- §1.3. Scada – системы
- §1.4. Scada – система trace mode
- 1.4.1. Обзор системы trace mode
- 1.4.2. Функциональная структура пакета
- 1.4.3. Обзор внедрения системы trace mode
- §1.5. Программно-технический комплекс DeltaV
- 1.5.1. Обзор системы DeltaV
- 1.5.2. Концепции системы DeltaV
- 1.5.3. Программные приложения DeltaV
- §1.6. Программно-технический комплекс Квинт
- 1.6.1. Описание
- 1.6.2. Структура программно-технического комплекса Квинт
- 1.6.3. Архитектура
- 1.6.4. Контроллеры
- 1.6.5. Рабочие станции
- 1.6.6. Сети
- 1.6.7. Система автоматизированного проектирования асу тп
- 1.6.8. Примеры внедрения
- §1.7. Системы автоматизации фирмы Siemens8
- 1.7.1. Состав программно-технического комплекса Totally Integrated Automation
- 1.7.2. Примеры автоматизации технологических процессов9
- §1.8. Системы автоматизации фирмы авв10
- 1.8.1. Основные направления деятельности
- 1.8.2. Системы управления, предлагаемые авв Автоматизация в России
- Глава 2. Обеспечивающие подсистемы информационно-управляющих систем и их характеристики §2.1. Программное обеспечение управления процессами
- 2.1.1. Реализация языков программирования стандарта мэк 6-1131/3 в системе trace mode
- 2.1.2. Описание языков программирования
- 2.1.3. Реализация регуляторов и объектов управления в scada-системе TraceMode
- §2.2. Программное обеспечение секвенциально-логического управления
- 2.2.1. Программируемые логические контроллеры
- 2.2.2. Языки программирования логических контроллеров
- 2.2.3. Пример реализации секвенциально-логических алгоритмов в trace mode
- §2.3. Средства идентификации и оптимизации
- 2.3.1. Идентификация характеристик технологических объектов
- 2.3.2. Идентификация характеристик технологических объектов с использованием стандартных методов Excel
- 2.3.3. Решение задачи оптимизация технологических объектов
- §2.4. Средства интеллектуального анализа данных
- 2.4.1. Общие представления о Data Mining13
- 2.4.2. Задачи Data Mining
- 2.4.3. Классы систем Data Mining
- 2.4.4. Основные этапы Data Mining
- Глава 3. Проектирование информационно-управляющих систем §3.1. Основные проблемы, системный подход и последовательность разработки
- §3.2. Адаптация информационно-управляющих систем к области применения
- §3.3. Информационные технологии проектирования иус
- §3.4. Концепции информационного моделирования
- Часть II. Примеры автоматизированных информационно-управляющих систем в управлении энергетической эффективностью технологических процессов
- 1. Оперативное управление технологическими процессами с прогнозом показателей энергетической эффективности16
- 2. Оперативное управление потоками энергетических ресурсов в производственных сетях с учетом динамики их аккумулирования19
- 3. Автоматизированная система диспетчерского управления теплоснабжением зданий на основе полевых технологий20
- 4. Паспортизация промышленных потребителей топливно-энергетических ресурсов с использованием средств автоматизации21
- 5. Оперативное управление экономичностью водяных тепловых сетей на основе макромоделирования22
- Подсистема автоматизированного анализа режимов теплоснабжения
- Методика анализа режимов тепловых сетей на основе макромоделирования
- Программное обеспечение анализа режимов тепловых сетей на основе макромоделирования
- 6. Оперативное регулирование экономичности горения в энергетических котлах24
- 7. Автоматизированный мониторинг тепловой экономичности оборудования электрических станций 27
- Резервы тепловой экономичности котлов
- Показатели энергетических ресурсов турбоагрегатов
- Резервы тепловой экономичности турбоагрегатов
- Оптимальное использование пара
- 8. Оптимизация нагрузки параллельно работающих турбоагрегатов по данным эксплуатации при неполных исходных данных28
- Постановка задачи оптимизации
- Решение задачи оптимизации
- Программа «тг-пар»
- Пример работы программы
- 9. Автоматизированная информационная система мониторинга остаточного ресурса энергетического оборудования30
- Методика оценки обобщенного остаточного ресурса энергетического оборудования
- Алгоритм оперативной оценки обобщенного остаточного ресурса энергооборудования с учетом состояния металла
- Программное обеспечение аис «Ресурс»
- 10. Автоматизированное управление процессами в охладительных установках электрических станций35
- Факторы, влияющие на охлаждение
- Устройство и основные характеристики градирен
- Оптимизация работы башенных градирен
- 11. Автоматизированная компрессорная установка41
- Математическое описание объекта управления
- Анализ вариантов установки пароструйного компрессора для подачи пара в деаэраторы энергокорпуса
- Автоматизированная система управления пароструйным компрессором
- 12. Лингвистический подход к оптимизации управления вельц-процессом45
- Алгоритм выделения области Парето-оптимальных режимов в информационной базе данных
- Нечеткие зависимости (лингвистические правила) в управлении процессом вельцевания
- 13. Энергетический менеджмент производства огнеупоров48
- Приложение. Обзор промышленных сетей
- 1. Протокол передачи данных modbus50
- 2. Протокол передачи данных bitbus
- 3. Протокол передачи данных anbus
- 4. Протокол передачи данных hart
- 5. Протокол передачи данных profibus52
- 5.1. Независимые от поставщика взаимодействия между промышленными объектами (Fieldbus Communication).
- 5.2. Семейство profibus
- 5.3. Основные характеристики profibus-fms и profibus-dp
- 5.3.1. Архитектура протокола profibus
- 5.3.2. Физический Уровень (1) протокола profibus
- 5.4.1. Прикладной Уровень (7)
- 5.4.2. Коммуникационная модель
- 5.4.3. Объекты коммуникации
- 5.4.4. Сервисные функции fms
- 6. Полевая шина foundation Fieldbus53