7.2. Представления автомата
Конечный автомат удобно представлять таблицей переходов и таблицей выходов. Строкам этих таблиц соответствуют состояния автомата, столбцам – входные символы. На пересечении строки, соответствующей состоянию q, и столбца, соответствующего входному символу а, в таблице переходов записывается значение (a, q), а в таблице выходов – значение (a, q). Другими словами, в первом случае в клетке таблицы указывается состояние, в которое автомат переходит из состояния q при поступлении на его вход символа а, а во втором случае – выходной символ, который при этом выдает автомат. Табл.7.2 и табл.7.3 представляют собой пример описанного представления автомата Мили, у которого А = {a1, a2, a3, a4}, В = {b1, b2} и Q {q1, q2, q3}.
Таблица 7.2 Таблица 7.3
Функция Функция
| a1 | a2 | a3 | a4 |
|
|
|
|
|
| a1 | a2 | a3 | a4 |
q1 | q1 | q2 | q1 | q2 |
|
|
|
|
| q1 | b1 | b1 | b2 | b1 |
q2 | q3 | q1 | q3 | q1 |
|
|
|
|
| q2 | b1 | b2 | b2 | b1 |
q3 | q3 | q1 | q1 | q1 |
|
|
|
|
| q3 | b2 | b2 | b1 | b1 |
Зная начальное состояние автомата и входную последовательность, нетрудно получить по этим таблицам соответствующую последовательность выходных символов. Приведем пример такого соответствия для автомата, заданного табл. 7.2 и 7.3, на вход которого поступила последовательность символов а1, а2, а2, а1, а3, а4, а1, а4 при начальном состоянии q1. Покажем также состояния, которые проходит автомат:
-
а1
а2
а2
а1
а3
а4
а1
а4
q1
q1
q2
q1
q1
q1
q2
q3
b1
b1
b2
b1
b2
b1
b1
b1.
Автомат Мура представляется одной таблицей переходов, к которой добавлен один столбец со значениями функции выходов (табл. 7.4).
Можно свести таблицу переходов и таблицу выходов автомата Мили в одну таблицу, которую называют таблицей переходов и выходов. Такая таблица для автомата, заданного в виде табл. 7.2 и табл. 7.3, имеет вид табл. 7.5.
Более наглядным при небольшом числе состояний является представление автомата в виде графа поведения автомата, который представляет собой ориентированный граф. Его вершины соответствуют состояниям автомата, а дуги – переходам между состояниями. При этом дуга помечается всеми входными символами, которые вызывают соответствующий переход, и выходными символами, сопровождающими данный переход (в случае автомата Мили). В случае автомата Мура выходными символами помечаются вершины, соответствующие состояниям, в которых находится автомат при выдаче данных символов. На рис. 7.1 изображены графы переходов автоматов, заданных табл. 7.4 и 7.5.
Таблица 7.4 Таблица 7.5
Таблица переходов автомата Мура Таблица переходов и выходов
автомата Мили
| a1 | a2 | a3 | a4 | |
|
|
|
|
| a1 | a2 | a3 | a4 |
q1 | q1 | q2 | q1 | q2 | b1 |
|
|
|
| q1 | q1,b1 | q2,b1 | q1,b2 | q2,b1 |
q2 | q3 | q1 | q3 | q1 | b1 |
|
|
|
| q2 | q3,b1 | q1,b2 | q3,b2 | q1,b1 |
q3 | q3 | q1 | q1 | q1 | b2 |
|
|
|
| q3 | q3,b2 | q1,b2 | q1,b1 | q1,b1 |
a1, a3 q1, b1 a1/b1, a3/b2
q1
a2/b2, a3/b1, a4/b1
a2, a4 a2, a4 a2, a3, a4 a2/b1, a4/b1 a2/b2, a4/b1
a1 a1/b2
q2, b1 a1, а3 q3, b2 q3 q2 a1/b1, a3/b2
а) б)
Рис. 7.1. Примеры графов поведения: а) автомата Мура; б) автомата Мили
Еще одним способом представления автомата является матрица поведения, представляющая собой квадратную матрицу, строки и столбцы которой помечаются состояниями автомата. В случае автомата Мура на пересечении строки qi и столбца qj матрицы поведения записываются входные символы, переводящие автомат из состояния qi в состояние qj, а строки помечаются также и выходными символами. В случае автомата Мили элементы матрицы поведения, кроме входных символов, вызывающих соответствующие переходы, содержат выходные символы, которые сопровождают эти переходы. Если из состояния qi нет перехода в состояние qj, то на пересечении строки qi и столбца qj ставится прочерк. Для рассмотренных автоматов ниже представлены матрицы поведения, причем первая из них – матрица поведения автомата Мура, вторая – матрица поведения автомата Мили.
,
.
- Литература
- Перечень компьютерных программ, наглядных и других пособий, методических указаний и материалов и технических средств обучения
- 1.2.Операции над множествами
- 1.3. Булева алгебра множеств
- 1.4. Разбиения и покрытия
- 2. Отношения бинарные и n-арные
- 2.1. Декартово произведение
- 2.2. Бинарные отношения (соответствия)
- 2.3. Операции над бинарными отношениями
- 2.4. Функциональные отношения
- 2.5. Бинарные отношения на множестве
- 2.6. Алгебраические системы
- 3. Основные понятия теории графов
- 3.1. Абстрактный граф
- 3.2. Графическое представление бинарного отношения
- Множеств а и в
- 3.3. Матричные представления графа
- 3.4. Части графа
- 3.5. Достижимость и связность
- 3.6. Доминирующие множества графа
- 3.7. Независимые множества графа
- 3.8. Раскраска графа
- 3.9.Планарность графов
- 3.10. Инварианты графов
- 4. Булевы функции
- 4.1. Способы задания булевой функции
- 4.2. Элементарные булевы функции и алгебраические формы
- 4.3. Интерпретации булевой алгебры
- 4.4. Нормальные формы булевых функций
- 4.4.1. Дизъюнктивные нормальные формы
- 4.4.2. Конъюнктивные нормальные формы
- 4.5 Полнота и замкнутость системы логических функций
- 4.6. Локальные упрощения днф
- 4.6.1. Удаление избыточных элементарных конъюнкций
- 4.6.2. Удаление избыточных литералов
- 4.7. Графическое представление булева пространства и булевых функций
- 4.7.1. Булев гиперкуб
- 4.7.2. Развертка гиперкуба на плоскости. Карта Карно
- 4.8. Минимизация днф
- 4.8.1. Метод Квайна-МакКласки
- 4.8.2. Метод Блейка-Порецкого
- 4.8.3. Визуально-матричный метод минимизации
- 5. Элементы математической логики
- 5.1 Алгебра высказываний
- Всякое высказывание логично следует из самого себя.
- 2. Закон противоречия:
- Если из а следует b, а b ложно, то а тоже ложно.
- 5.2. Логические отношения
- 5.3.Проверка правильности рассуждений
- 5.4. Решение логических задач методом характеристического уравнения
- 5.6. Кванторы
- 5.7 Эквивалентные соотношения. Префиксная нормальная форма
- 6. Основы теории алгоритмов
- 6.1. Интуитивное понятие об алгоритме
- 6.2. Три типа алгоритмических моделей
- 6.3. Кризис теории множеств антиномии. Выводы из антиномий
- 6.4. Машины Тьюринга как модели алгоритмов
- 6.5. Алгоритмы решения некоторых задач теории графов на графах
- 7. Конечный автомат и его описание.
- 7.2. Представления автомата
- 7.3. Связь между моделями Мили и Мура
- 7.4. Автомат с абстрактным состоянием. Булев автомат
- 7.5. Понятие о регулярных выражениях алгебры событий.
- 7.6. Задачи абстрактной теории конечных автоматов
- 8. Комбинаторные задачи и методы комбинаторного поиска
- 8.1. Задачи подсчета числа комбинаторных решений
- 8.2. Особенности оптимизационных комбинаторных задач
- 8.3. Вычислительная сложность
- 8.4. Методы комбинаторного поиска
- 8.5. Задача о кратчайшем покрытии и методы ее решения
- 8.5.1. Постановка задачи
- 8.5.2. Приближенные методы решения задачи
- 8.5.3. Точный метод
- Вопросы к зачету
- 28. Нормальные формы булевых функций. Дизъюнктивные нормальные формы
- 44. Эквивалентные соотношения. Префиксная нормальная форма
- Практический раздел Контрольная работа Указания по выбору варианта
- Контрольное задание №1. Используя диаграммы Эйлера-Венна, решить задачу
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №2. Получить сднф, скнф, используя таблицу истинности. Построить днф, кнф, упростив выражение.
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №3. Упростить схему (рис. 2)
- Методические указания
- Задачи для самостоятельного решения
- Задачи для самостоятельного решения
- Методические указания
- Задачи для самостоятельного решения
- Контрольное задание №6. Найти инварианты неориентированного графа, заданного матрицей смежности
- Методические указания
- Задачи для самостоятельного решения