11.1 Расчет зануления для автоматизированного электропривода насосной установки машины непрерывного литья заготовок
Зануление – это преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением.
Принцип действия зануления – превращение замыкания на корпус в однофазное короткое замыкание (между фазным и нулевым проводником) с целью вызвать больший ток, способный обеспечить срабатывание защиты и автоматически отключит поврежденное электрооборудование от питающей сети. В качестве отключающих аппаратов могут быть использованы плавкие предохранители, автоматические выключатели, магнитные пускатели и т.д. Необходимо также отметить, что с момента возникновения аварии (замыкания на корпус) до момента автоматического отключения поврежденного оборудования от сети имеется небольшой промежуток времени, в течение которого прикосновение к корпусу опасно, так как корпус находится под напряжением Uф (рисунок 11.1) и отключение его от сети еще не произошло. В этот период срабатывает защитная функция заземления корпуса оборудования через нулевой защитный проводник.
Из рисунка видно, что схема зануления требует наличия в сети следующих элементов: нулевого защитного проводника, глухого заземления нейтрали источника тока, повторного заземления нулевого защитного проводника.
Нулевой защитный проводник предназначен для обеспечения необходимого отключения установки значения тока путем создания для этого тока цепи с малым сопротивлением.
Назначение заземления нейтрали – снижение напряжения зануленных корпусов относительно земли до безопасного значения при замыкании фазы на землю.
Назначение повторного заземления нулевого защитного проводника – снижение напряжения на корпус относительно земли при замыкании фазы на корпус в случае исправной схемы и в случае обрыва нулевого защитного проводника.
1 - корпус; 2 - аппараты защиты от токов короткого замыкания.
Рисунок 11.1 - Схема зануления
r0 - сопротивление заземления нейтрали источника тока;
Ik - ток короткого замыкания;
Iн - часть тока короткого замыкания, протекающая через нулевой проводник;
Iз - часть тока короткого, протекающая через землю; 0 - нулевой защитный проводник.
Область применения зануления:
1) трехфазные четырех проводные сети напряжением до 1000 В с заземленной нейтралью;
2) сети постоянного тока, если средняя точка источника заземлена;
3) однофазные сети переменного тока с заземленным выводом.
Отключение поврежденной насосной установки от питающей сети произойдет, если значение тока однофазного короткого замыкания IК, которое искусственно создается в цепи, превысит значение тока срабатывания защитного аппаратаIэ.р.и выполнит следующее условие:
. (11.1)
Уставка срабатывания по току короткого замыкания автоматического выключателя IЭ.Р.=500А (таблица 9.3). Таким образом из (11.1) следует:
Величину тока однофазного короткого замыкания, возникающего в петле фаза - нулевой провод, при однофазном замыкании на корпус, определяют по формуле [24]:
(11.2)
где
(11.3)
Zп- полное сопротивление петли фаза-ноль;
Zт/3 - сопротивление трансформатора;
rф- активное сопротивление фазных жил кабеля;
r0- активное сопротивление зануляющего проводника;
х - реактивное сопротивление (определяется только для электропроводок в стальных трубах);
Согласно [24] Rф=3,74Ом/км,R0=1,07Ом/км,Zт/3=0,043Ом.
Сопротивление на участке длиной 30 м фазной жилы:
rф=3,74·0,03 = 0,1122 Ом.
Сопротивление на участке длиной 30 м нулевой жилы:
r0 =1,07·0,03 = 0,0321 Ом.
Подставим значения в формулу (11.3) и найдем полное сопротивление петли фаза-ноль.
Находим действующее значение тока однофазного короткого замыкания, проходящего в схеме в аварийном режиме:
Согласно условию (11.1):
,
следовательно отключающая способность системы зануления .
- Содержание
- Введение
- 1 Анализ технологического процесса промышленной установки и формулирование требований к автоматизированному электроприводу
- 1.1 Описание промышленной установки
- 1.2 Анализ технологического процесса промышленной установки и выбор управляемых координат электропривода
- 1.3 Формулирование требований к автоматизированному электроприводу
- 2 Проектирование функциональной схемы автоматизированного электропривода
- 2.1 Обзор систем электропривода, применяемых в промышленной установке
- 2.2 Выбор рациональной системы электропривода
- 2.3 Проектирование функциональной схемы автоматизированного электропривода
- 3 Выбор электродвигателя
- 3.1 Анализ кинематической схемы механизма и определение её параметров. Составление математической модели механической части электропривода и определение её параметров.
- 3.3 Предварительный выбор двигателя по мощности
- 3.6 Проверка выбранного электродвигателя по нагреву и перегрузочной способности
- 4 Проектирование преобразователя электрической энергии
- 4.1 Определение возможных вариантов и обоснование выбора вида преобразователя электрической энергии
- 4.2 Расчет параметров и выбор электрических аппаратов силовой цепи: входного и выходного фильтров, тормозного резистора
- 5 Проектирование системы автоматического управления
- 5.1 Выбор датчиков для измерения управляемых координат электропривода
- 5.2 Составление математических моделей (уравнений, структурных схем) объекта управления, датчиков и исполнительного устройства
- 5.3 Расчет параметров объекта управления, датчиков и исполнительного устройства
- 5.4 Проектирование регуляторов на основании разработанных математических моделей и требований к автоматизированному электроприводу
- 6Расчет и анализ динамических и статических характеристик автоматизированного электропривода
- 6.1 Разработка компьютерной (имитационной) модели автоматизированного электропривода
- 6.2 Расчет переходных процессов и определение показателей качества
- 6.3 Построение статических характеристик электропривода
- 7 Окончательная проверка правильности выбора электродвигателя
- 7.1 Построение точной нагрузочной диаграммы электропривода за цикл работы автоматизированного электропривода
- 7.2 Проверка электродвигателя по нагреву и перегрузочной способности электропривода по точной нагрузочной диаграмме
- 8 Проектирование системы автоматизации промышленной установки на основе программируемого контроллера
- 8.1 Формализация условий работы промышленной установки
- 8.2 Разработка алгоритма и программы управления
- 8.3 Проектирование функциональной схемы системы автоматизации
- 8.4 Выбор аппаратов системы автоматизации
- 8.5 Проектирование схемы электрической соединений системы автоматизации
- 8.6 Полное описание функционирования системы автоматизации
- 9 Проектирование схемы электроснабжения и электрической защиты промышленной установки
- 9.1 Выбор аппаратов, проводов, кабелей
- 10 Проектирование схемы электрической общей и подключения автоматизированного электропривода
- 10.1 Схема электрическая общая и подключения автоматизированного электропривода
- 10.2 Составление перечня элементов электрооборудования промышленной установки
- 10.3 Полное описание функционирования автоматизированного электропривода
- 11 Охрана труда
- 11.1 Расчет зануления для автоматизированного электропривода насосной установки машины непрерывного литья заготовок
- 11.2 Меры безопасности при обслуживании электродвигателей насосной станции
- 11.3 Пожарная безопасность
- 12 Экономическое обоснование технических решений
- Заключение
- Список использованных источников