Выбор типа кабеля для горизонтальных подсистем
Большинство проектировщиков начинает разработку структурированной кабельной системы с горизонтальных подсистем, так как именно к ним подключаются конечные пользователи. При этом они могут выбирать между экранированной витой парой, неэкранированной витой парой, коаксиальным кабелем и волоконно-оптическим кабелем. Возможно использование и беспроводных линий связи.
Горизонтальная подсистема характеризуется очень большим количеством ответвлений кабеля (рис. 11.3), так как его нужно провести к каждой пользовательской розетке, причем и в тех комнатах, где пока компьютеры в сеть не объединяются. Поэтому к кабелю, используемому в горизонтальной проводке, предъявляются повышенные требования к удобству выполнения ответвлений, а также удобству его прокладки в помещениях. На этаже обычно устанавливается кроссовая панель, которая позволяет с помощью коротких отрезков кабеля, оснащенного разъемами, провести перекоммутацию соединений между пользовательским оборудованием и концентраторами/коммутаторами.
Рис. 11.3. Структура кабельной системы этажа и здания
Медный провод, в частности неэкранированная витая пара, является предпочтительной средой для горизонтальной кабельной подсистемы, хотя, если пользователям нужна очень высокая пропускная способность или кабельная система прокладывается в агрессивной среде, для нее подойдет и волоконно-оптический кабель. Коаксиальный кабель - это устаревшая технология, которой следует избегать, если только она уже широко не используется на предприятии. Беспроводная связь является новой и многообещающей технологией, однако из-за сравнительной новизны и низкой помехоустойчивости лучше ограничить масштабы ее использования неответственными областями.
При выборе кабеля принимаются во внимание следующие характеристики: полоса пропускания, расстояние, физическая защищенность, электромагнитная помехозащищенность, стоимость. Кроме того, при выборе кабеля нужно учитывать, какая кабельная система уже установлена на предприятии, а также какие тенденции и перспективы существуют на рынке в данный момент.
Экранированная витая пара, STP, позволяет передавать данные на большее расстояние и поддерживать больше узлов, чем неэкранированная. Наличие экрана делает ее более дорогой и не дает возможности передавать голос. Экранированная витая пара используется в основном в сетях, базирующихся на продуктах IBM и Token Ring, и редко подходит к остальному оборудованию локальных сетей.
Неэкранированная витая пара UTP по характеристикам полосы пропускания и поддерживаемым расстояниям также подходит для создания горизонтальных подсистем. Но так как она может передавать данные и голос, она используется чаще.
Однако и коаксиальный кабель все еще остается одним из возможных вариантов кабеля для горизонтальных подсистем. Особенно в случаях, когда высокий уровень электромагнитных помех не позволяет использовать витую пару или же небольшие размеры сети не создают больших проблем с эксплуатацией кабельной системы.
Толстый Ethernet обладает по сравнению с тонким большей полосой пропускания, он более стоек к повреждениям и передает данные на большие расстояния, однако к нему сложнее подсоединиться и он менее гибок. С толстым Ethernet сложнее работать, и он мало подходит для горизонтальных подсистем. Однако его можно использовать в вертикальной подсистеме в качестве магистрали, если оптоволоконный кабель по каким-то причинам не подходит.
Тонкий Ethernet - это кабель, который должен был решить проблемы, связанные с применением толстого Ethernet. До появления стандарта 10Base-T тонкий Ethernet был основным кабелем для горизонтальных подсистем. Тонкий Ethernet проще монтировать, чем толстый. Сети на тонком Ethernet можно быстро собрать, так как компьютеры соединяются друг с другом непосредственно.
Главный недостаток тонкого Ethernet - сложность его обслуживания. Каждый конец кабеля должен завершаться терминатором 50 Ом. При отсутствии терминатора или утере им своих рабочих свойств (например, из-за отсутствия контакта) перестает работать весь сегмент сети, подключенный к этому кабелю. Аналогичные последствия имеет плохое соединение любой рабочей станции (осуществляемое через Т-коннектор). Неисправности в сетях на тонком Ethernet сложно локализовать. Часто приходится отсоединять Т-коннектор от сетевого адаптера, тестировать кабельный сегмент и затем последовательно повторять эту процедуру для всех присоединенных узлов. Поэтому стоимость эксплуатации сети на тонком Ethernet обычно значительно превосходит стоимость эксплуатации аналогичной сети на витой паре, хотя капитальные затраты на кабельную систему для тонкого Ethernet обычно ниже.
Основные области применения оптоволоконного кабеля - вертикальная подсистема и подсистемы кампусов. Однако, если нужна высокая степень защищенности данных, высокая пропускная способность или устойчивость к электромагнитным помехам, волоконно-оптический кабель может использоваться и в горизонтальных подсистемах. С волоконно-оптическим кабелем работают протоколы AppleTalk, ArcNet, Ethernet, FDDI и Token Ring, а также новые протоколы l00VG-AnyLAN, Fast Ethernet, ATM.
Стоимость установки сетей на оптоволоконном кабеле для горизонтальной подсистемы оказывается весьма высокой. Эта стоимость складывается из стоимости сетевых адаптеров и стоимости монтажных работ, которая в случае оптоволокна гораздо выше, чем при работе с другими видами кабеля.
Преобладающим кабелем для горизонтальной подсистемы является неэкранированная витая пара категории 5. Ее позиции еще более укрепятся с принятием спецификации 802.3ab для применения на этом виде кабеля технологии Gigabit Ethernet.
На рис. 11.4 показаны типовые коммутационные элементы структурированной кабельной системы, применяемые на этаже при прокладке неэкранированной витой пары. Для сокращения количества кабелей здесь установлен 25-парный кабель и разъем для такого типа кабеля Telco, имеющий 50 контактов.
Рис. 11.4. Коммутационные элементы горизонтальной кабельной подсистемы для UTP
- Раздел I. Общие принципы построения вычислительных сетей 3
- Многотерминальные системы – прообраз сети
- Появление глобальных сетей
- Первые локальные сети
- Создание стандартных технологий локальных сетей
- Современные тенденции
- 1.2. Вычислительные сети - частный случай распределенных систем
- Мультипроцессорные компьютеры
- Многомашинные системы
- Вычислительные сети
- Распределенные программы
- 1.3. Что дает предприятию использование сетей
- 2. Основные проблемы построения сетей
- 2.1. Проблемы физической передачи данных по линиям связи
- 2.2. Проблемы объединения нескольких компьютеров
- Топология физических связей
- Организация совместного использования линий связи
- Адресация компьютеров
- 2.3. Ethernet - пример стандартного решения сетевых проблем
- 2.4. Структуризация как средство построения больших сетей
- Физическая структуризация сети
- Логическая структуризация сети
- 2.5. Сетевые службы
- 3. Модель взаимодействия открытых систем и проблемы стандартизации
- 3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- 3.2. Модель osi
- 3.3. Уровни модели osi Физический уровень
- Канальный уровень
- Сетевой уровень
- Транспортный уровень
- Сеансовый уровень
- Представительный уровень
- Прикладной уровень
- Сетезависимые и сетенезависимые уровни
- 3.4. Стандартные стеки коммуникационных протоколов
- Стек tcp/ip
- Стек ipx/spx
- Стек NetBios/smb
- 4. Локальные и глобальные сети. Требования, предъявляемые к современным вычислительным сетям
- 4.1. Локальные и глобальные сети
- 4.2 Требования, предъявляемые к современным вычислительным сетям
- Производительность
- Надежность и безопасность
- Расширяемость и масштабируемость
- Прозрачность
- Поддержка разных видов трафика
- Управляемость
- Совместимость
- Раздел II. Основы передачи дискретных данных
- 5. Линии связи
- 5.1. Типы линий связи
- 5.2. Аппаратура линий связи
- 5.3. Характеристики линий связи
- Амплитудно-частотная характеристика, полоса пропускания и затухание
- Пропускная способность линии
- Связь между пропускной способностью линии и ее полосой пропускания
- Помехоустойчивость и достоверность
- 10 Log Рвых/Рнав ,
- 5.4. Стандарты кабелей
- Кабели на основе неэкранированной витой пары
- Кабели на основе экранированной витой пары
- Коаксиальные кабели
- Волоконно-оптические кабели
- 6. Методы передачи дискретных данных на физическом уровне
- 6.1. Аналоговая модуляция
- Методы аналоговой модуляции
- Спектр модулированного сигнала
- 6.2. Цифровое кодирование
- Требования к методам цифрового кодирования
- Потенциальный код без возвращения к нулю
- Метод биполярного кодирования с альтернативной инверсией
- Потенциальный код с инверсией при единице
- Биполярный импульсный код
- Манчестерский код
- Потенциальный код 2b1q
- 6.3. Логическое кодирование
- Избыточные коды
- Скрэмблирование
- 6.4. Дискретная модуляция аналоговых сигналов
- 6.5. Асинхронная и синхронная передачи
- 7. Методы передачи данных канального уровня. Методы коммутации
- 7.1. Методы передачи данных канального уровня
- Асинхронные протоколы
- Синхронные символьно-ориентированные и бит-ориентированные протоколы
- Символьно-ориентированные протоколы
- Бит-ориентированные протоколы
- Протоколы с гибким форматом кадра
- Передача с установлением соединения и без установления соединения
- Обнаружение и коррекция ошибок
- Методы обнаружения ошибок
- Методы восстановления искаженных и потерянных кадров
- Компрессия данных
- 7.2. Методы коммутации
- Коммутация каналов
- Коммутация каналов на основе частотного мультиплексирования
- Коммутация каналов на основе разделения времени
- Общие свойства сетей с коммутацией каналов
- Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
- Коммутация пакетов. Принципы коммутации пакетов
- Виртуальные каналы в сетях с коммутацией пакетов
- Пропускная способность сетей с коммутацией пакетов
- Коммутация сообщений
- Раздел III. Базовые технологии локальных сетей
- 10. Технологии Token Ring, fddi, Fast Ethernet
- 10.1. Технология Token Ring (802.5) Основные характеристики технологии
- Маркерный метод доступа к разделяемой среде
- Форматы кадров Token Ring
- Кадр данных и прерывающая последовательность
- Приоритетный доступ к кольцу
- Физический уровень технологии Token Ring
- Раздел IV. Построение локальных сетей по стандартам физического и канального уровней
- 11. Кабельная система. Концентраторы и сетевые адаптеры
- 11.1. Структурированная кабельная система
- Иерархия в кабельной системе
- Выбор типа кабеля для горизонтальных подсистем
- Выбор типа кабеля для вертикальных подсистем
- Выбор типа кабеля для подсистемы кампуса
- 11.2. Концентраторы и сетевые адаптеры
- Сетевые адаптеры
- Классификация сетевых адаптеров
- Концентраторы
- Поддержка резервных связей
- Защита от несанкционированного доступа
- Многосегментные концентраторы
- Управление концентратором по протоколу snmp
- Конструктивное исполнение концентраторов
- Раздел V. Сетевой уровень как средство построения больших сетей
- 13.Ip-сети. Адресация в ip-сетях
- 13.1. Принципы объединения сетей на основе протоколов сетевого уровня
- Ограничения мостов и коммутаторов
- Понятие internetworking
- Функции маршрутизатора
- Реализация межсетевого взаимодействия средствами tcp/ip
- Многоуровневая структура стека tcp/ip
- Уровень межсетевого взаимодействия
- Основной уровень
- Прикладной уровень
- Уровень сетевых интерфейсов
- Соответствие уровней стека tcp/ip семиуровневой модели iso/osi
- 13.2. Адресация в ip-сетях Типы адресов стека tcp/ip
- Классы ip-адресов
- Особые ip-адреса
- Использование масок в ip-адресации
- Порядок распределения ip-адресов
- Автоматизация процесса назначения ip-адресов
- Отображение ip-адресов на локальные адреса
- Отображение доменных имен на ip-адреса
- Система доменных имен dns
- 14. Протокол ip
- 14.1. Основные функции протокола ip
- 14.2. Структура ip-пакета
- 14.3. Таблицы маршрутизации в ip-сетях
- Примеры таблиц различных типов маршрутизаторов
- Назначение полей таблицы маршрутизации
- Источники и типы записей в таблице маршрутизации
- 14.4. Маршрутизация без использования масок
- 14.5. Маршрутизация с использованием масок Использование масок для структуризации сети
- Использование масок переменной длины
- Технология бесклассовой междоменной маршрутизации cidr
- 14.6. Фрагментация ip-пакетов
- 14.7. Протокол надежной доставки tcp-сообщений
- Сегменты и потоки
- Соединения
- Реализация скользящего окна в протоколе tcp