Маркерный метод доступа к разделяемой среде
В сетях с маркерным методом доступа (а к ним, кроме сетей Token Ring, относят сети FDDI, а также сети, близкие к стандарту 802.4, - ArcNet, сети производственного назначения MAP) право на доступ к среде передается циклически от станции к станции по логическому кольцу.
В сети Token Ring кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер. В сети Token Ring любая станция всегда непосредственно получает данные только от одной станции - той, которая является предыдущей в кольце. Такая станция называется ближайшим активным соседом, расположенным выше по потоку (данных) - Nearest Active Upstream Neighbor, NAUN. Передачу же данных станция всегда осуществляет своему ближайшему соседу вниз по потоку данных.
Получив маркер, станция анализирует его и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении одной станции к другой. Кадр снабжен адресом назначения и адресом источника.
Все станции кольца ретранслируют кадр побитно, как повторители. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер для обеспечения возможности другим станциям сети передавать данные. Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с, описанных в стандарте 802.5.
Рис. 10.1. Принцип маркерного доступа
На рис. 10.1 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3. После прохождения станции назначения 3 в пакете А устанавливаются два признака - признак распознавания адреса и признак копирования пакета в буфер (что на рисунке отмечено звездочкой внутри пакета). После возвращения пакета в станцию 1 отправитель распознает свой пакет по адресу источника и удаляет пакет из кольца. Установленные станцией 3 признаки говорят станции-отправителю о том, что пакет дошел до адресата и был успешно скопирован им в свой буфер.
Время владения разделяемой средой в сети Token Ring ограничивается временем удержания маркера (token holding time), после истечения которого станция обязана прекратить передачу собственных данных (текущий кадр разрешается завершить) и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров в зависимости от размера кадров и величины времени удержания маркера. Обычно время удержания маркера по умолчанию равно 10 мс, а максимальный размер кадра в стандарте 802.5 не определен. Для сетей 4 Мбит/с он обычно равен 4 Кбайт, а для сетей 16 Мбит/с - 16 Кбайт. Это связано с тем, что за время удержания маркера станция должна успеть передать хотя бы один кадр. При скорости 4 Мбит/с за время 10 мс можно передать 5000 байт, а при скорости 16 Мбит/с - соответственно 20000 байт. Максимальные размеры кадра выбраны с некоторым запасом.
В сетях Token Ring 16 Мбит/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно, так как по кольцу одновременно продвигаются кадры нескольких станций. Тем не менее, свои кадры в каждый момент времени может генерировать только одна станция - та, которая в данный момент владеет маркером доступа. Остальные станции в это время только повторяют чужие кадры, так что принцип разделения кольца во времени сохраняется, ускоряется только процедура передачи владения кольцом.
Для различных видов сообщений, передаваемым кадрам, могут назначаться различные приоритеты: от 0 (низший) до 7 (высший). Решение о приоритете конкретного кадра принимает передающая станция (протокол Token Ring получает этот параметр через межуровневые интерфейсы от протоколов верхнего уровня, например прикладного). Маркер также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера. В противном случае станция обязана передать маркер следующей по кольцу станции.
За наличие в сети маркера, причем единственной его копии, отвечает активны монитор. Если активный монитор не получает маркер в течение длительного времени (например, 2,6 с), то он порождает новый маркер.
Yandex.RTB R-A-252273-3- Раздел I. Общие принципы построения вычислительных сетей 3
- Многотерминальные системы – прообраз сети
- Появление глобальных сетей
- Первые локальные сети
- Создание стандартных технологий локальных сетей
- Современные тенденции
- 1.2. Вычислительные сети - частный случай распределенных систем
- Мультипроцессорные компьютеры
- Многомашинные системы
- Вычислительные сети
- Распределенные программы
- 1.3. Что дает предприятию использование сетей
- 2. Основные проблемы построения сетей
- 2.1. Проблемы физической передачи данных по линиям связи
- 2.2. Проблемы объединения нескольких компьютеров
- Топология физических связей
- Организация совместного использования линий связи
- Адресация компьютеров
- 2.3. Ethernet - пример стандартного решения сетевых проблем
- 2.4. Структуризация как средство построения больших сетей
- Физическая структуризация сети
- Логическая структуризация сети
- 2.5. Сетевые службы
- 3. Модель взаимодействия открытых систем и проблемы стандартизации
- 3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- 3.2. Модель osi
- 3.3. Уровни модели osi Физический уровень
- Канальный уровень
- Сетевой уровень
- Транспортный уровень
- Сеансовый уровень
- Представительный уровень
- Прикладной уровень
- Сетезависимые и сетенезависимые уровни
- 3.4. Стандартные стеки коммуникационных протоколов
- Стек tcp/ip
- Стек ipx/spx
- Стек NetBios/smb
- 4. Локальные и глобальные сети. Требования, предъявляемые к современным вычислительным сетям
- 4.1. Локальные и глобальные сети
- 4.2 Требования, предъявляемые к современным вычислительным сетям
- Производительность
- Надежность и безопасность
- Расширяемость и масштабируемость
- Прозрачность
- Поддержка разных видов трафика
- Управляемость
- Совместимость
- Раздел II. Основы передачи дискретных данных
- 5. Линии связи
- 5.1. Типы линий связи
- 5.2. Аппаратура линий связи
- 5.3. Характеристики линий связи
- Амплитудно-частотная характеристика, полоса пропускания и затухание
- Пропускная способность линии
- Связь между пропускной способностью линии и ее полосой пропускания
- Помехоустойчивость и достоверность
- 10 Log Рвых/Рнав ,
- 5.4. Стандарты кабелей
- Кабели на основе неэкранированной витой пары
- Кабели на основе экранированной витой пары
- Коаксиальные кабели
- Волоконно-оптические кабели
- 6. Методы передачи дискретных данных на физическом уровне
- 6.1. Аналоговая модуляция
- Методы аналоговой модуляции
- Спектр модулированного сигнала
- 6.2. Цифровое кодирование
- Требования к методам цифрового кодирования
- Потенциальный код без возвращения к нулю
- Метод биполярного кодирования с альтернативной инверсией
- Потенциальный код с инверсией при единице
- Биполярный импульсный код
- Манчестерский код
- Потенциальный код 2b1q
- 6.3. Логическое кодирование
- Избыточные коды
- Скрэмблирование
- 6.4. Дискретная модуляция аналоговых сигналов
- 6.5. Асинхронная и синхронная передачи
- 7. Методы передачи данных канального уровня. Методы коммутации
- 7.1. Методы передачи данных канального уровня
- Асинхронные протоколы
- Синхронные символьно-ориентированные и бит-ориентированные протоколы
- Символьно-ориентированные протоколы
- Бит-ориентированные протоколы
- Протоколы с гибким форматом кадра
- Передача с установлением соединения и без установления соединения
- Обнаружение и коррекция ошибок
- Методы обнаружения ошибок
- Методы восстановления искаженных и потерянных кадров
- Компрессия данных
- 7.2. Методы коммутации
- Коммутация каналов
- Коммутация каналов на основе частотного мультиплексирования
- Коммутация каналов на основе разделения времени
- Общие свойства сетей с коммутацией каналов
- Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
- Коммутация пакетов. Принципы коммутации пакетов
- Виртуальные каналы в сетях с коммутацией пакетов
- Пропускная способность сетей с коммутацией пакетов
- Коммутация сообщений
- Раздел III. Базовые технологии локальных сетей
- 10. Технологии Token Ring, fddi, Fast Ethernet
- 10.1. Технология Token Ring (802.5) Основные характеристики технологии
- Маркерный метод доступа к разделяемой среде
- Форматы кадров Token Ring
- Кадр данных и прерывающая последовательность
- Приоритетный доступ к кольцу
- Физический уровень технологии Token Ring
- Раздел IV. Построение локальных сетей по стандартам физического и канального уровней
- 11. Кабельная система. Концентраторы и сетевые адаптеры
- 11.1. Структурированная кабельная система
- Иерархия в кабельной системе
- Выбор типа кабеля для горизонтальных подсистем
- Выбор типа кабеля для вертикальных подсистем
- Выбор типа кабеля для подсистемы кампуса
- 11.2. Концентраторы и сетевые адаптеры
- Сетевые адаптеры
- Классификация сетевых адаптеров
- Концентраторы
- Поддержка резервных связей
- Защита от несанкционированного доступа
- Многосегментные концентраторы
- Управление концентратором по протоколу snmp
- Конструктивное исполнение концентраторов
- Раздел V. Сетевой уровень как средство построения больших сетей
- 13.Ip-сети. Адресация в ip-сетях
- 13.1. Принципы объединения сетей на основе протоколов сетевого уровня
- Ограничения мостов и коммутаторов
- Понятие internetworking
- Функции маршрутизатора
- Реализация межсетевого взаимодействия средствами tcp/ip
- Многоуровневая структура стека tcp/ip
- Уровень межсетевого взаимодействия
- Основной уровень
- Прикладной уровень
- Уровень сетевых интерфейсов
- Соответствие уровней стека tcp/ip семиуровневой модели iso/osi
- 13.2. Адресация в ip-сетях Типы адресов стека tcp/ip
- Классы ip-адресов
- Особые ip-адреса
- Использование масок в ip-адресации
- Порядок распределения ip-адресов
- Автоматизация процесса назначения ip-адресов
- Отображение ip-адресов на локальные адреса
- Отображение доменных имен на ip-адреса
- Система доменных имен dns
- 14. Протокол ip
- 14.1. Основные функции протокола ip
- 14.2. Структура ip-пакета
- 14.3. Таблицы маршрутизации в ip-сетях
- Примеры таблиц различных типов маршрутизаторов
- Назначение полей таблицы маршрутизации
- Источники и типы записей в таблице маршрутизации
- 14.4. Маршрутизация без использования масок
- 14.5. Маршрутизация с использованием масок Использование масок для структуризации сети
- Использование масок переменной длины
- Технология бесклассовой междоменной маршрутизации cidr
- 14.6. Фрагментация ip-пакетов
- 14.7. Протокол надежной доставки tcp-сообщений
- Сегменты и потоки
- Соединения
- Реализация скользящего окна в протоколе tcp