Символьно-ориентированные протоколы
Символьно-ориентированные протоколыиспользуются в основном для передачи блоков отображаемых символов, например текстовых файлов. Так как при синхронной передаче нет стоповых и стартовых битов, для синхронизации символов необходим другой метод. Синхронизация достигается за счет того, что передатчик добавляет два или более управляющих символа, называемых символами SYN, перед каждым блоком символов. В коде ASCII символ SYN имеет двоичное значение 0010110, это несимметричное относительно начала символа значение позволяет легко разграничивать отдельные символы SYN при их последовательном приеме. Символы SYN выполняют две функции: во-первых, они обеспечивают приемнику побитную синхронизацию, во-вторых, как только битовая синхронизация достигается, они позволяют приемнику начать распознавание границ символов SYN. После того как приемник начал отделять один символ от другого, можно задавать границы начала кадра с помощью другого специального символа. Обычно в символьных протоколах для этих целей используется символ STX (Start of TeXt, ASCII 0000010). Другой символ отмечает окончание кадра - ЕТХ (End of TeXt, ASCII 0000011).
Однако такой простой способ выделения начала и конца кадра хорошо работал только в том случае, если внутри, кадра не было символов STX и ЕТХ. При подключении к компьютеру алфавитно-цифровых терминалов такая задача действительно не возникала. Тем не менее синхронные символьно-ориентированные протоколы позднее стали использоваться и для связи компьютера с компьютером, а в этом случае данные внутри кадра могут быть любые, если, например, между компьютерами передается программа. Наиболее популярным протоколом такого типа был протокол BSC компании IBM. Он работал в двух режимах - непрозрачном, в котором некоторые специальные символы внутри кадра запрещались, и прозрачном, в котором разрешалась передачи внутри кадра любых символов, в том числе и ЕТХ. Прозрачность достигалась за счет того, что перед управляющими символами STX и ЕТХ всегда вставлялся символ DLE (Data Link Escape). Такая процедура называется стаффингом символов (stuff - всякая всячина, заполнитель). А если в поле данных кадра встречалась последовательность DLE ЕТХ, то передатчик удваивал символ DLE, то есть порождал последовательность DLE DLE ЕТХ. Приемник, встретив подряд два символа DLE DLE, всегда удалял первый, но оставшийся DLE уже не рассматривал как начало управляющей последовательности, то есть оставшиеся символы DLE ЕТХ считал просто пользовательскими данными.
- Раздел I. Общие принципы построения вычислительных сетей 3
- Многотерминальные системы – прообраз сети
- Появление глобальных сетей
- Первые локальные сети
- Создание стандартных технологий локальных сетей
- Современные тенденции
- 1.2. Вычислительные сети - частный случай распределенных систем
- Мультипроцессорные компьютеры
- Многомашинные системы
- Вычислительные сети
- Распределенные программы
- 1.3. Что дает предприятию использование сетей
- 2. Основные проблемы построения сетей
- 2.1. Проблемы физической передачи данных по линиям связи
- 2.2. Проблемы объединения нескольких компьютеров
- Топология физических связей
- Организация совместного использования линий связи
- Адресация компьютеров
- 2.3. Ethernet - пример стандартного решения сетевых проблем
- 2.4. Структуризация как средство построения больших сетей
- Физическая структуризация сети
- Логическая структуризация сети
- 2.5. Сетевые службы
- 3. Модель взаимодействия открытых систем и проблемы стандартизации
- 3.1. Многоуровневый подход. Протокол. Интерфейс. Стек протоколов
- 3.2. Модель osi
- 3.3. Уровни модели osi Физический уровень
- Канальный уровень
- Сетевой уровень
- Транспортный уровень
- Сеансовый уровень
- Представительный уровень
- Прикладной уровень
- Сетезависимые и сетенезависимые уровни
- 3.4. Стандартные стеки коммуникационных протоколов
- Стек tcp/ip
- Стек ipx/spx
- Стек NetBios/smb
- 4. Локальные и глобальные сети. Требования, предъявляемые к современным вычислительным сетям
- 4.1. Локальные и глобальные сети
- 4.2 Требования, предъявляемые к современным вычислительным сетям
- Производительность
- Надежность и безопасность
- Расширяемость и масштабируемость
- Прозрачность
- Поддержка разных видов трафика
- Управляемость
- Совместимость
- Раздел II. Основы передачи дискретных данных
- 5. Линии связи
- 5.1. Типы линий связи
- 5.2. Аппаратура линий связи
- 5.3. Характеристики линий связи
- Амплитудно-частотная характеристика, полоса пропускания и затухание
- Пропускная способность линии
- Связь между пропускной способностью линии и ее полосой пропускания
- Помехоустойчивость и достоверность
- 10 Log Рвых/Рнав ,
- 5.4. Стандарты кабелей
- Кабели на основе неэкранированной витой пары
- Кабели на основе экранированной витой пары
- Коаксиальные кабели
- Волоконно-оптические кабели
- 6. Методы передачи дискретных данных на физическом уровне
- 6.1. Аналоговая модуляция
- Методы аналоговой модуляции
- Спектр модулированного сигнала
- 6.2. Цифровое кодирование
- Требования к методам цифрового кодирования
- Потенциальный код без возвращения к нулю
- Метод биполярного кодирования с альтернативной инверсией
- Потенциальный код с инверсией при единице
- Биполярный импульсный код
- Манчестерский код
- Потенциальный код 2b1q
- 6.3. Логическое кодирование
- Избыточные коды
- Скрэмблирование
- 6.4. Дискретная модуляция аналоговых сигналов
- 6.5. Асинхронная и синхронная передачи
- 7. Методы передачи данных канального уровня. Методы коммутации
- 7.1. Методы передачи данных канального уровня
- Асинхронные протоколы
- Синхронные символьно-ориентированные и бит-ориентированные протоколы
- Символьно-ориентированные протоколы
- Бит-ориентированные протоколы
- Протоколы с гибким форматом кадра
- Передача с установлением соединения и без установления соединения
- Обнаружение и коррекция ошибок
- Методы обнаружения ошибок
- Методы восстановления искаженных и потерянных кадров
- Компрессия данных
- 7.2. Методы коммутации
- Коммутация каналов
- Коммутация каналов на основе частотного мультиплексирования
- Коммутация каналов на основе разделения времени
- Общие свойства сетей с коммутацией каналов
- Обеспечение дуплексного режима работы на основе технологий fdm, tdm и wdm
- Коммутация пакетов. Принципы коммутации пакетов
- Виртуальные каналы в сетях с коммутацией пакетов
- Пропускная способность сетей с коммутацией пакетов
- Коммутация сообщений
- Раздел III. Базовые технологии локальных сетей
- 10. Технологии Token Ring, fddi, Fast Ethernet
- 10.1. Технология Token Ring (802.5) Основные характеристики технологии
- Маркерный метод доступа к разделяемой среде
- Форматы кадров Token Ring
- Кадр данных и прерывающая последовательность
- Приоритетный доступ к кольцу
- Физический уровень технологии Token Ring
- Раздел IV. Построение локальных сетей по стандартам физического и канального уровней
- 11. Кабельная система. Концентраторы и сетевые адаптеры
- 11.1. Структурированная кабельная система
- Иерархия в кабельной системе
- Выбор типа кабеля для горизонтальных подсистем
- Выбор типа кабеля для вертикальных подсистем
- Выбор типа кабеля для подсистемы кампуса
- 11.2. Концентраторы и сетевые адаптеры
- Сетевые адаптеры
- Классификация сетевых адаптеров
- Концентраторы
- Поддержка резервных связей
- Защита от несанкционированного доступа
- Многосегментные концентраторы
- Управление концентратором по протоколу snmp
- Конструктивное исполнение концентраторов
- Раздел V. Сетевой уровень как средство построения больших сетей
- 13.Ip-сети. Адресация в ip-сетях
- 13.1. Принципы объединения сетей на основе протоколов сетевого уровня
- Ограничения мостов и коммутаторов
- Понятие internetworking
- Функции маршрутизатора
- Реализация межсетевого взаимодействия средствами tcp/ip
- Многоуровневая структура стека tcp/ip
- Уровень межсетевого взаимодействия
- Основной уровень
- Прикладной уровень
- Уровень сетевых интерфейсов
- Соответствие уровней стека tcp/ip семиуровневой модели iso/osi
- 13.2. Адресация в ip-сетях Типы адресов стека tcp/ip
- Классы ip-адресов
- Особые ip-адреса
- Использование масок в ip-адресации
- Порядок распределения ip-адресов
- Автоматизация процесса назначения ip-адресов
- Отображение ip-адресов на локальные адреса
- Отображение доменных имен на ip-адреса
- Система доменных имен dns
- 14. Протокол ip
- 14.1. Основные функции протокола ip
- 14.2. Структура ip-пакета
- 14.3. Таблицы маршрутизации в ip-сетях
- Примеры таблиц различных типов маршрутизаторов
- Назначение полей таблицы маршрутизации
- Источники и типы записей в таблице маршрутизации
- 14.4. Маршрутизация без использования масок
- 14.5. Маршрутизация с использованием масок Использование масок для структуризации сети
- Использование масок переменной длины
- Технология бесклассовой междоменной маршрутизации cidr
- 14.6. Фрагментация ip-пакетов
- 14.7. Протокол надежной доставки tcp-сообщений
- Сегменты и потоки
- Соединения
- Реализация скользящего окна в протоколе tcp