Графічні пристрої
Графічні пристрої складаються з диспейного процесора, пристрою відображення або дисплейного пристрою (монітор) і одного або декількох пристроїв введення. Дисплей (монітор) є екраном, на який виводиться графічне зображення проте виведення конкретного зображення на екран виконується дисплейним процесором. Іншими словами, дисплейний процесор одержує сигнали, якими кодує графічні команди і генерує електронні пучки направляючи їх у потрібне місце монітора утворюючи необхідне зображення.
До складу графічних пристроїв зазвичай входить один або декілька пристроїв введення. Крім клавіатури до них відносяться миша, спейсбол, цифровий планшет, 3D-маніпулятори та інші пристрої (рис. 14.2). Вони покликані забезпечувати інтерактивному маніпулюванню формами, даючи користувачеві можливість вводити графічні дані в комп’ютер безпосередньо.
Векторні оптичні пристрої явилися у середині 60-х рр. XX ст., складаються з дисплейного процесора, дисплейного буфера пам’яті і електронно-променевої трубки. Основні принципи їх функціонування коротко можна описати таким чином.
Дисплейний процесор зчитує дисплейний файл (display list), який є послідовністю кодів, що відповідають графічним командам. Дисп‑
ейний файл зберігається в розділі пам’яті, який називається дисп‑
ейним буфером (display buffer). Дисплейний процесор здійснює також завантаження дисплейного файлу в дисплейний буфер.
Растрові оптичні пристрої з’явилися у середині 70-х рр. XX ст. у результаті широкого розповсюдження телевізійних технологій. З тих пір вони стали основним видом графічних пристроїв завдяки високому співвідношенню «якість - ціна». Основні принципи їх функціонування коротко можна описати таким чином.
Дисплейний процесор приймає графічні команди від додатку, перетворює їх у точкове зображення, або растр, після чого зберігає растр в розділі пам’яті, який називається буфером кадру (frame buffer). Зрозуміти принцип утворення растрового зображення можна якщо подивитись на зображення з телевізійного екрану зблизька. Розміри точок визначається встановленою роздільною здатністю. Растрові графічні пристрої повинні зберігати в своїй пам’яті зображення у вигляді растру, на відміну від векторних, які зберігають лише дисплейні файли. Тому вимоги до пам’яті у цих двох видів пристроїв відрізняються, як і методи оновлення зображення на екрані.
Рис. 14.2. Пристрої введення графічної інформації: цифровий планшет (диджитайзер) з маніпулятором миша; спейсбол; 3D-маніпулятор; маніпулятор типу CadMan
Графічні пристрої описані вище найчастіше об’єднуються в кластер, розрахований на обслуговування багатьох користувачів. Існує три основні варіанти конфігурації такого кластера.
Перша конфігурація складається з мейнфрейма (mainframe) і багатьох графічних пристроїв (рис. 14.3). Графічні пристрої підключаються до мейн-фрейма так, як і алфавітно-цифрові термінали в звичайних обчислювальних центрах. До нього ж підключаються і пристрої виводу, такі як принтери і плотери. Оскільки така конфігурація може розглядатися як природне розширення існуючого обчислювального середовища вона найширше застосовується у крупних компаніях в яких вже були мейнфрейми. Цей підхід використовується виробниками автомобілів, крупногабаритних машин, залізничного, авіаційного і морського транспорту та ін., які мають великі бази дані, що обробляються централізовано. До недоліків цієї конфігурації слід віднести: потребу у великих початкових капіталовкладеннях у апаратне і програмне забезпечення та обслуговування експлуатованої системи.
Рис. 14.3. Мейнфрейм з графічними пристроями
Обслуговування мейнфрейма завжди включає розширення системної пам’яті і жорсткого диска, що для мейнфрейма коштує набагато дорожче ніж для невеликих комп’ютерів. Більш того, оновлення операційної системи теж потребує значних затрат. Програми CAD/CAM/CAE вимагають досить частої заміни у зв’язку з виходом нових набагато потужніших версій і альтернатив, а також через
помилки при первинному виборі програмного забезпечення. Програми CAD/CAM/CAE для мейнфреймів коштують набагато дорожче, ніж аналогічні програми для менших комп’ютерів. Ще одним серйозним недоліком централізованих обчислень є нестабільність часу відгуку системи. У конфігурації з мейнфреймом додатки користувачів, що відносяться до різних графічних пристроїв, конкурують один з одним за обчислювальні ресурси мейнфрейма. Тому час відгуку для будь-якого конкретного графічного пристрою залежить від того, які завдання були запущені з іншого пристрою. Іноді час відгуку може бути дуже великим для інтерактивної роботи з графікою, особливо коли інші користувачі вирішують складні обчислювальні задачі.
Друга конфігурація складається з автоматизованих робочих місць проектувальника (робочих станцій - workstations), об’єднаних у мережу (рис. 14.4). До тієї ж мережі підключаються пристрої виводу - плотери і принтери. Робоча станція - це графічний пристрій з власними обчислювальними ресурсами. Такий підхід в даний час використовується дуже широко, тому що у області технологій виготовлення робочих станцій досягнуто значного прогресу, крім того, з’явилась тенденція до розподілу обчислень. Продуктивність робочих станції подвоюється щороку при збереженні їх ціни. Такий підхід має і інші переваги, зокрема користувач може працювати з будьякою станцією мережі вибираючи її відповідно до свого завдання, причому системні ресурси не залежатимуть від завдань інших користувачів. Ще одна перевага - відсутність необхідності в крупних первинних капіталовкладеннях. Кількість робочих станцій і програмних пакетів може збільшуватися поступово у міру зростання потреби в ресурсах CAD/CAM/CAE. Це є вигідно, тому що вартість устаткування постійно падає.
Рис. 14.4. Робочі станції об’єднані у мережу
Третя конфігурація аналогічна до другої за виключенням, що замість робочих станцій використовуються персональні комп’ютери з операційними системами Windows. Конфігурації на базі персональних комп’ютерів популярні в невеликих компаніях особливо якщо продукція, що випускається ними складаються з невеликої кількості деталей обмеженої складності, а також в компаніях, що використовують системи CAD/CAM/CAE головним чином для розробки креслень. У міру того як відмінність між персональними комп’ютерами і робочими станціями згладжується стирається і відмінність між другим і третім типом конфігурації
Лекція 15 Організаційне та методичне забезпечення САПР
План лекції
Організаційне забезпечення CАПР
Методичне забезпечення САПР
HIPO технологія САПР ПЗ
- Одеса 2010 передмова
- 2. Склад та структура сапр
- 4. Класи сапр
- Модуль 1 Основні принципи побудови і функціонування сапр зот
- Принципи створення сапр
- Стадії створення проекту в сапр
- Типова функціональна структура сапр.
- Підсистеми сапр
- Проектуючі та обслуговуючі підсистеми сапр.
- Різновиди сапр
- Підходи і методи проектування у сапр
- Завдання синтезу і аналізу
- Модуль 2
- Програмне забезпечення
- Склад операційних систем
- Операційна система в процесі розробки програм
- Режими роботи обчислювальних систем
- Класифікація і використання мов у сапр
- Мовні засоби машинної графіки
- Основні поняття та визначення інформаційного забезпечення
- Класифікація видів інформації
- Фактории, що сприяли появі програмно-технологічних засобів
- Основні поняття
- Апаратура автоматизованих робочих місць (арм)
- Склад компонентів арм
- Огляд сучасних засобів сапр
- Плотери
- Графічні пристрої
- Організаційне забезпечення cапр
- Методичне забезпечення сапр
- Варіанти управління даними в мережах сапр
- Розподілені бази даних