logo
Психологическая интуиция искусственных нейронных сетей

1.7.3 Прямое функционирование сети

Сеть функционирует дискретно по времени (тактами). Тогда синапсы можно разделить на “синапсы связи”, которые передают сигналы в данном такте, и на “синапсы памяти”, которые передают сигнал с выхода нейрона на его вход на следующем такте функционирования. Сигналы, возникающие в процессе работы сети разделяются на прямые (используемые при выдаче результата сетью) и двойственные (использующиеся при обучении) и могут быть заданы следующими формулами:

Для i-го нейрона на такте времени T:

где mi0 - параметр инциации сети, xi1 - входные сигналы сети, поступающие на данный нейрон, fiT - выходной сигнал нейрона на такте времени T, Ai1 - входной параметр i-го нейрона на первом такте функционирования сети, AiT - входной сигнал i-го нейрона на такте времени T, aji - вес синапса от j-го нейрона к i-му, aMi - вес синапся памяти i-го нейрона, ai1 - параметр нейрона и ai2 - параметр спонтанной активности нейрона, AiT-1 - входной сигнал i-го нейрона на такте T-1, fjT-1 - выходной сигнал j-го нейрона на такте T-1 и fiT,A - производная i-го нейрона по его входному сигналу.

Для синапса связи от i-го нейрона к j-му:

где sjT - входной сигнал синапса от i-го нейрона к j-му, fiT - выходной сигнал i-го нейрона, aij - вес данного синапса, sijT - выходной сигнал синапса на такте времени T.

Для синапса памяти i-го нейрона: