logo
Разработка Web-приложения для аналитической обработки информации о международном научно-техническом и образовательном сотрудничестве вузов России

1.1 Технологии оперативной аналитической обработки данных

программный модель приложение данные

В настоящее время огромные объемы данных накапливаются в учетных, так называемых транзакционных (OLTP), системах.

Такие системы строятся на основе современных СУБД, в которых развит механизм управления транзакциями, что сделало их основным средством создания систем оперативной обработки транзакций (OLTP-систем, On-Line Transactions Processing).

Основной задачей таких систем является обеспечение выполнения операций с БД. В таких системах почти всегда предусмотрены и поисковые функции, в том числе позволяющие выводить некоторую итоговую и агрегированную информацию.

Но возможности таких систем для выполнения комплексного, углубленного анализа данных, позволяющего принимать обоснованные решения, ограничены.

Без продуктивной переработки и анализа колоссальные потоки информационной руды, т.е. сырые данные, образуют никому не нужную свалку.

В связи с этим возникла необходимость создания аналитических систем, которые бы позволяли превратить сырые данные в полезные информацию и знания, на основе которых можно принимать управленческие решения.

Анализ данных в той или иной степени проводится во многих информационных системах, в том числе и в OLTP-системах. Но виды анализа данных различаются в зависимости от гибкости и глубины проводимого анализа.

Информационно-поисковый анализ - анализ данных, проводимый по заранее определенным, т.е. заранее заданным видам запросов (регламентированным запросам).

Оперативно-аналитический анализ - анализ данных, который требует формирования нерегламентированных запросов, когда невозможно заранее предсказать, какие запросы понадобятся пользователю.

Интеллектуальный анализ - глубокий анализ данных, позволяющий получать из имеющихся данных скрытые для пользователя знания, такие как:

§ функциональные и логические закономерности в накопленных данных;

§ модели и правила, объясняющие найденные закономерности;

§ прогнозы развития процессов.

Сравнение характеристик различных видов анализа данных иллюстрирует таблица 1.1.

Таблица 1.1 - Сравнение видов анализа данных

Характеристики

Виды анализа данных

Информационно-поисковый анализ

Оперативно-аналитический анализ

Интеллектуальный анализ

Виды запросов

Регламентированные

Нерегламентированные

Глубокий анализ

Вид получаемых данных

Выборки сырых данных

Обобщенная, сгруппированная, агрегированная информация

Модели, шаблоны, закономерности, знания

Решаемые задачи

Получение выборок данных

Грубый разведочный анализ, проверка заранее сформулированных гипотез

Получение новых, нетривиальных, скрытых знаний

Уровень интерактивности

Низкий

Интерактивное взаимодействие с информацией

Интерактивное взаимодействие с информацией

Таблица 1.1 - Сравнение видов анализа данных

Роль компьютера

Извлечение данных

Извлечение данных, визуализация данных

Извлечение данных, визуализация данных, обработка данных математическими методами

Подбор моделей и обработка данных

Пользователь

Пользователь

Компьютер

Применяемые методы анализа

Элементарные статистики

Математическая статистика

Методы Data Mining

В соответствии с рассмотренными выше видами анализа данных аналитические системы можно разделить на следующие группы:

1. Системы корпоративной отчетности:

§ используются для контроля оперативной ситуации и анализа отклонений (отвечают на вопрос «что происходит»);

§ предоставляют оперативные данные о результатах деятельности в виде заранее заданных форм отчетности;

§ базируются на информационно-поисковом анализе данных;

§ могут не использовать хранилище данных, а брать данные непосредственно из OLTP-систем;

§ предназначены для широкого круга конечных пользователей (клиенты, партнеры, фискальные учреждения).

2. Системы аналитической обработки данных и аналитической отчетности (OLAP-системы - системы оперативной аналитической обработки, On-Line Analytical Processing):

§ позволяют выполнять многомерный анализ данных по различным срезам;

§ обладают развитыми средствами аналитической отчетности и визуализации данных в виде различных типов таблиц, графиков и диаграмм;

§ базируются на оперативно-аналитическом анализе данных;

§ чаще всего используют хранилище данных, оптимизированное под задачи многомерного анализа данных;

§ ориентированы на пользователей, которым требуется постоянное интерактивное взаимодействие с информацией (менеджеры, аналитики).

3. Системы глубокого анализа данных:

§ обладают развитыми инструментами для проведения глубокого анализа;

§ позволяют получить нетривиальные, скрытые знания;

§ используют хранилище данных в качестве источника информации;

§ базируются на интеллектуальном анализе данных;

§ предназначены для аналитиков, обладающих знаниями в области методов анализа данных;

§ позволяют создавать законченные приложения для конечных пользователей в виде построенных моделей, шаблонов и отчетов.

Схематичное описание разделения аналитических систем по вышепредставленным группам отображено на рисунке 1.1.1.

OLAP (On-Line Analytical Processing) - технология оперативной аналитической обработки данных, использующая методы и средства сбора, хранения и анализа многомерных данных, в целях поддержки аналитической деятельности и возможности формирования нерегламентированных запросов и отчетов на их основе.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 1.1.1 - Виды аналитических систем

OLAP-системы создаются для конечных пользователей и аналитиков, предоставляя им инструменты для анализа данных и проверки возникающих гипотез.

Известен тест, созданный в 1995 году, определяющий критерии, по которым систему можно отнести к классу OLAP-систем.

Этот тест получил название FASMI (Fast Analysis of Shared Multidimensional Information) (быстрый анализ совместно используемой многомерной информации) и в настоящее время широко используется.

В соответствии с тестом FASMI OLAP определяется пятью ключевыми словами:

§ Fast (Быстрый);

§ Analysis (Анализ);

§ Shared (Разделяемой);

§ Multidimensional (Многомерной);

§ Information (Информации).

Схематичное представление теста изображено на рисунке 1.1.2.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Рисунок 1.1.2 - Тест FASMI.

1. Fast (Быстрый)

OLAP-система должна обеспечить выдачу ответов на большинство запросов в пределах приблизительно 5 секунд. Для простых запросов этот показатель может быть 1 секунда, а для редкостных по сложности запросов он может достигать 20 секунд.

Исследования показывают, что если отклик не получен в течение 30 секунд, то пользователь перестает считать систему полезной. Он способен нажать комбинацию клавиш <Ctrl>+<Alt>+<Del>, если система не предупредит, что обработка данных требует большего времени.

Но даже если система предупредит пользователя о продолжительном времени обработки аналитического запроса, пользователь может отвлечься и потерять мысль, что негативно скажется на качестве анализа.

Такой скорости обработки нелегко достигнуть на огромных массивах данных, особенно если требуются нестандартные и сложные запросы, формируемые «на лету».

Для достижения данной цели разработчики OLAP-систем используют разные методы:

- динамическая предобработка данных;

- создание специальных программно-аппаратных решений;

- применение аппаратных платформ с большей производительностью.

Критерий скорости является наиболее критическим в определении принадлежности системы к классу OLAP.

2. Analysis (Анализ).

OLAP-система должна справляться с любым логическим и статистическим анализом, характерным для данной прикладной области.

Все требуемые функциональные возможности анализа должны обеспечиваться понятным для пользователя способом.

OLAP-система должна обладать гибкостью в выдаче графических результатов анализа и позволять формировать отчеты любым желаемым способом без необходимости программирования.

3. Shared (Разделяемой).

OLAP-система должна работать в многопользовательском режиме, в связи с чем особо встает вопрос обеспечения конфиденциальности информации и наличия в таких системах средств защиты информации (права доступа, авторизация доступа и т.д.).

4. Multidimensional (Многомерной).

OLAP-система должна обеспечивать многомерное представление данных. Речь не идет о числе измерений многомерной модели данных или размерах каждого измерения. Это зависит от конкретной прикладной области и решаемых аналитических задач.

5. Information (Информации).

OLAP-система должна обеспечивать получение необходимой информации в условиях реального приложения.

Мощность OLAP-системы определяется количеством входных данных, которые она может обработать. Способности OLAP-систем к обработке информации разнятся в 1000 раз, что определяется множеством факторов, включая требуемую оперативную память, использование дискового пространства, интеграцию с хранилищами данных и другими аналитическими компонентами.

Таким образом, в тесте FASMI сделан акцент на такие важные свойства OLAP-систем как скорость обработки, многопользовательский доступ, релевантность информации, наличие средств статистического анализа и многомерность, т.е. представление анализируемых фактов как функций от большого числа их характеризующих параметров.