logo
ИТ_2012

21 Имитационное моделирование. Принципы построения имитационных моделей

Имитационные математические модели применяются тогда, когда техническая система особенно сложна или когда необходим высокий уровень детализации представления процессов, протекающих в ней. К таким системам можно отнести экономические и производственные объекты, морские порты, аэропорты и др. Для таких технических систем ради получения аналитической математической модели исследователь вынужден накладывать жёсткие ограничения на модель и прибегать к упрощениям.

Имитационная модель — логико-математическое описание объекта, которое может быть использовано для экспериментирования на компьютере в целях проектирования, анализа и оценки функционирования объекта.

Имитационное моделирование — метод, позволяющий строить модели, описывающие процессы так, как они проходили бы в действительности.

Такую модель можно использовать любое количество времени как для одного испытания, так и заданного их множества. При этом результаты будут определяться случайным характером процессов. По этим данным можно получить достаточно устойчивую статистику.

Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между ее элементами или другими словами — разработке симулятора исследуемой предметной области для проведения различных экспериментов.

Этапы:

Принципы построения ИМ модели:

Принцип  Δt. Алгоритмом моделирования имитируется движение, то есть изменение состояния системы, в фиксированные моменты времени: t, t + Δt, t + 2Δt, t + 3Δt, …

Для этого заводится счетчик времени (часы), который на каждом цикле увеличивает свое значение t на величину шага во времени Δt, начиная с нуля (начало моделирования). Таким образом, изменения системы отслеживаются такт за тактом в заданные моменты: t, t + Δt, t + 2Δt, t + 3Δt,

Принцип особых состояний. 

К примеру, состояние, в котором обычно находится система, обычным состоянием. Такие состояния интереса не представляют, хотя занимают большую часть времени.

Особые состояния — это такие состояния в изолированные моменты времени, в которых характеристики системы изменяются скачкообразно. Для изменения состояния системы нужна определенная причина, например, приход очередного входного сигнала. Ясно, что с точки зрения моделирования интерес представляет именно изменение характеристик системы, то есть принцип требует от нас отслеживать моменты перехода системы из одного особого состояния в другое.