logo
7 Моделирование (требования + задания)

1. Описание движения в поле тяжести с помощью обыкновенных дифференциальных уравнений

Физические явления, рассматриваемые в данном курсе, обычно описываются одним или несколькими обыкновенными дифференциальными уравнениями (ОДУ).

Необходимо проанализировав условие задачи, записать систему ОДУ и дополнительные условия в соответствии с порядком уравнения и разрешить уравнения относительно старшей производной.

Рассмотрим движение тела, брошенного с начальной горизонтальной скоростью V0. Если не учитывать сопротивления воздуха, на такое тело действует только сила тяжести Fт=mg (см. рисунок). Уравнение движения тела получается из рассмотрения второго закона Ньютона:

или (1)

Выберем систему координат, начало отсчета которой, связано с землей, ось у направлена вверх. Тогда из (1) в проекциях на оси координат имеем:

и . (2)

Начальные условия: при t = 0:

Для понижения порядка ОДУ вводим новые переменные и переходим к системе ОДУ первого порядка:

(3)

Для решения задачи с использованием электронных таблиц воспользуемся определением производной через приращение функции:

Выразим искомые величины через бесконечно малое приращение времени dt.

Запишем схему Эйлера, которая позволяет решать систему ОДУ численно,:

(4)

Где - шаг по времени. Значение индексаi определяет предыдущее значение функции, а i+1 последующее. Так как проекция ускорения на ось х равна нулю и скорость Vx не меняется, третье уравнение в системе (4) можно опустить. Учитывая начальные условия, получим

(5)

Таким образом, подставляя в схему Эйлера (4) начальные условия (5), можно получить значение координат и скоростей в момент времени t, а с их помощью – значения переменных в следующий момент времени и т.д.

Для учета сопротивления воздуха, во второй закон Ньютона (1) нужно включить еще одну силу

(6).

Тогда,

(7).

Этот случай описывается следующей системой ОДУ первого порядка:

(8)

Эта же система уравнений будет описывать и случай вертикального движения тела (только Vx = V0=0 и два первых уравнения в системе (8) можно не рассматривать), и случай движения тела с начальной скоростью, направленной под углом к горизонту.