25. Этапы построения базы данных.
В файловых системах одновременная работа нескольких пользователей, связанная с модификацией данных в файле либо вообще не реализовывалась, либо была замедлена. Эти недостатки привели к разработке новых подходов к управлению информации. Этот подход был реализован в рамках новых программных средств и называется системой управления базой данных (СУБД), а сами хранилища информации назывались базами данных и банками данных. Одним из первых этапов создания базы данных – это были большие ЭВМ. Первые СУБД были даны в эксплуатацию фирмой IBM в конце 60-х годов. Эта СУБД была связана с организацией базы данных на больших ЭВМ (360) и ЕС (Единая система). Здесь базы данных хранились во внешней памяти центрального ЭВМ. Пользовательскими задачами были запуск данных в пакетном режиме. Мощные операционные системы параллельно обеспечивали множество задач. Эти системы можно было отнести к системе распределённого доступа, потому что база данных была централизованной. Хранилась на установленной внешней памяти одной из центрального ЭВМ, а доступ к ней поддерживался от многих пользователей и задач.
В дальнейшем в теории базы данных был сделан большой вклад американским математиком Эдвардом Коддом, который являлся создателем теории реляционной базы данных и в то же время появились языки высокого уровня.
Второй этап – это эпоха персональных компьютеров. В это время появились программы, которые назывались СУБД и позволяли хранить значительный объём информации. Они имели удобный интерфейс для заполнения базы данных. Они позволяли автоматизировать множественные функции, которые ранее велись вручную. Первые базы данных на компьютерах были недолговечны, т.е. они не учитывали взаимосвязи реальных объектов и спрос на удобные программы СУБД. Это привело к созданию настольных СУБД. При этом каждый разработчик разрабатывал собственные СУБД , используя стандартные языки программирования и таким образом каждый раз приходилось набранные данные переносить на более новый СУБД. Это было одно из основных недостатков этой эпохи. Яркие представители этой эпохи были: dbase, FoxPro, clipper, Paradox.
Третий этап распределения базы данных. В этом этапе появилось большое количество локальных сетей, все больше информации передаются между компьютерами и встаёт задача о согласовании данных , хранящихся и обрабатываемых в разных местах, но которые логически связаны друг с другом. Решение этой задачи приводит к появлению распределённой базы данных, сохраняющих преимущество всех настольных СУБД, но в тоже время позволяющих организовать параллельную обработку информации. Именно на этом этапе были начаты работы связанные с концепцией объектно ориентированной базы данных (SQL). Для манипулирования данными на этом этапе был использован SQL и технологии по обмену данными между СУБД, к которым можно отнести ODBC (open database connectivity). Именно на этом этапе были представлены MsAccess, MsSQL,ORCL и т.д.
Четвёртый этап- перспективы развития СУБД. Он характерен новой технологией доступа к данным intronet. При этом отпадают необходимости использования специального клиентского программного обеспечения. Для работы с удалённой базой данных используют стандартные браузеры Интернет Explorer и т.д. При этом встроенный в загруженный пользователями html страницы код, написан на языках java, JavaScript отлаживает все действия пользователя и транслируют их в низкоуровневые SQL запросы. Таким образом выполняется клиентская программа. Удобства такого подхода позволило использовать его не только в удалённые базы данных, но и в локальных сетях предприятий.
26.основные функции СУБД
Непосредственное управление данными во внешней памяти
Эта функция включает обеспечение необходимых структур внешней памяти как для хранения данных, непосредственно входящих в БД, так и для служебных целей, например, для убыстрения доступа к данным в некоторых случаях (обычно для этого используются индексы). В некоторых реализациях СУБД активно используются возможности существующих файловых систем, в других работа производится вплоть до уровня устройств внешней памяти. Но подчеркнем, что в развитых СУБД пользователи в любом случае не обязаны знать, использует ли СУБД файловую систему, и если использует, то как организованы файлы. В частности, СУБД поддерживает собственную систему именования объектов БД.
Управление буферами оперативной памяти
СУБД обычно работают с БД значительного размера; по крайней мере этот размер обычно существенно больше доступного объема оперативной памяти. Понятно, что если при обращении к любому элементу данных будет производиться обмен с внешней памятью, то вся система будет работать со скоростью устройства внешней памяти. Практически единственным способом реального увеличения этой скорости является буферизация данных в оперативной памяти. При этом, даже если операционная система производит общесистемную буферизацию (как в случае ОС UNIX), этого недостаточно для целей СУБД, которая располагает гораздо большей информацией о полезности буферизации той или иной части БД. Поэтому в развитых СУБД поддерживается собственный набор буферов оперативной памяти с собственной дисциплиной замены буферов.
Управление транзакциями
Транзакция - это последовательность операций над БД, рассматриваемых СУБД как единое целое. Либо транзакция успешно выполняется, и СУБД фиксирует (COMMIT) изменения БД, произведенные этой транзакцией, во внешней памяти, либо ни одно из этих изменений никак не отражается на состоянии БД. Понятие транзакции необходимо для поддержания логической целостности БД. Если вспомнить наш пример информационной системы с файлами СОТРУДНИКИ и ОТДЕЛЫ, то единственным способом не нарушить целостность БД при выполнении операции приема на работу нового сотрудника является объединение элементарных операций над файлами СОТРУДНИКИ и ОТДЕЛЫ в одну транзакцию. Таким образом, поддержание механизма транзакций является обязательным условием даже однопользовательских СУБД (если, конечно, такая система заслуживает названия СУБД). Но понятие транзакции гораздо более важно в многопользовательских СУБД.
Журнализация
Одним из основных требований к СУБД является надежность хранения данных во внешней памяти. Под надежностью хранения понимается то, что СУБД должна быть в состоянии восстановить последнее согласованное состояние БД после любого аппаратного или программного сбоя. Обычно рассматриваются два возможных вида аппаратных сбоев: так называемые мягкие сбои, которые можно трактовать как внезапную остановку работы компьютера (например, аварийное выключение питания), и жесткие сбои, характеризуемые потерей информации на носителях внешней памяти. Примерами программных сбоев могут быть: аварийное завершение работы СУБД (по причине ошибки в программе или в результате некоторого аппаратного сбоя) или аварийное завершение пользовательской программы, в результате чего некоторая транзакция остается незавершенной. Первую ситуацию можно рассматривать как особый вид мягкого аппаратного сбоя; при возникновении последней требуется ликвидировать последствия только одной транзакции.
Журнал - это особая часть БД, недоступная пользователям СУБД и поддерживаемая с особой тщательностью (иногда поддерживаются две копии журнала, располагаемые на разных физических дисках), в которую поступают записи обо всех изменениях основной части БД. В разных СУБД изменения БД журнализуются на разных уровнях: иногда запись в журнале соответствует некоторой логической операции изменения БД (например, операции удаления строки из таблицы реляционной БД), иногда - минимальной внутренней операции модификации страницы внешней памяти; в некоторых системах одновременно используются оба подхода.
Поддержка языков БД
Для работы с базами данных используются специальные языки, в целом называемые языками баз данных. В ранних СУБД поддерживалось несколько специализированных по своим функциям языков. Чаще всего выделялись два языка - язык определения схемы БД (SDL - Schema Definition Language) и язык манипулирования данными (DML - Data Manipulation Language). SDL служил главным образом для определения логической структуры БД, т.е. той структуры БД, какой она представляется пользователям. DML содержал набор операторов манипулирования данными, т.е. операторов, позволяющих заносить данные в БД, удалять, модифицировать или выбирать существующие данные.
27. Модели данных: иерархические, сетевые, реляционные.
Информация в базах данных может быть организована по-разному. Базы данных разделяются на:
Реляционные (табличные)
Иерархические
Сетевые
В настоящее время наибольшее распространение получили реляционные базы данных.
В реляционных базах данных все данные представлены в виде простых таблиц, разбитых на строки и столбцы, на пересечении которых расположены данные. Запросы к таким таблицам возвращают таблицы, которые сами могут становиться предметом дальнейших запросов. Каждая база данных может включать несколько таблиц.
Иерархические базы данных графически могут быть представлены как дерево, состоящее из объектов различных уровней. Верхний уровень занимает один объект, второй — объекты второго уровня и т. д.
Между объектами существуют связи, каждый объект может включать в себя несколько объектов более низкого уровня. Такие объекты находятся в отношении предка (объект более близкий к корню) к потомку (объект более низкого уровня), при этом возможно, чтобы объект-предок не имел потомков или имел их несколько, тогда как у объекта-потомка обязательно только один предок. Объекты, имеющие общего предка, называются близнецами.
Примерами иерархических БД являются каталог папок Windows, реестр Windows, база данных Доменная система имен.
Сетевая база данных образуется обобщением иерархической за счет допущения объектов,имеющих более одного предка, т.е. каждый элемент вышестоящего уровня может быть связан одновременно с любыми элементами следующего уровня. Вообще, на связи между объектами в сетевых моделях не накладывается никаких ограничений.
Сетевой базой данных фактически является Всемирная паутина глобальной компьютерной сети Интернет. Гиперссылки связывают между собой сотни миллионов документов в единую распределенную сетевую базу данных.
- 10.Виды и назначение запоминающих устройств персонального компьютера.
- 13.Структура программного обеспечения.
- 14.Функции и назначение операционной системы. Признаки графической операционной системы.
- 15. Функции и назначение сервисных системных программ.
- 16. Характеристика пакетов прикладных программ.
- 17.Назначение инструментальных систем программирования. Примеры.???
- 18.Компьютерные сети. Классификация и назначение
- 19. Информационная безопасность. Основные направления защиты информации.
- 20.Моделирование как научный метод и как способ решения практических задач.
- 21.Понятие информационной системы.
- 22. Типы информационных систем
- 23.Структура информационной системы.
- 24. Понятие базы данных, место базы данных в информационной системе.
- 25. Этапы построения базы данных.
- 28.Основные понятия реляционной базы данных.