9.1. Общие сведения о маршрутизирующих протоколах
Маршрутизаторы объединяют сегменты сетей или отдельные локальные сети в составную (распределенную) сеть. Маршрутизаторы функционируют в дейтаграммных сетях с коммутацией пакетов, где все возможные маршруты уже существуют. Поэтому пакету нужно лишь выбрать наилучший путь, на основе метрики протокола маршрутизации. Процесс прокладывания пути производится последовательно от одного маршрутизатора к другому. Этот процесс маршрутизации (routing) является функцией Уровня 3 модели OSI. При прокладывании пути пакета маршрутизатор анализирует сетевой адрес узла назначения, заданный в заголовке пакета, вычленяет из него адрес сети, чтобы идентифицировать сеть адресата в пределах сети Интернет. Адреса сетей назначения хранятся в таблице маршрутизации. Поэтому маршрутизатор должен создавать и поддерживать таблицы маршрутизации, а также извещать другие маршрутизаторы о всех известных ему изменениях в топологии сети.
Совокупность сетей, представленных набором маршрутизаторов под общим административным управлением, образует автономную систему (рис. 9.1). Автономные системы нумеруются и в некоторых протоколах (IGRP, EIGRP) эти номера используются.
Рис. 9.1. Взаимодействие автономных систем
Маршрутизацию, т.е. прокладывание маршрута внутри автономных систем, осуществляют маршрутизирующие протоколы внутреннего шлюза (Interior Gateway Protocols - IGPs), к которым относятся RIP, RIPv2, IGRP, EIGRP, OSPF, Intermediate System-to-Intermediate System (IS-IS). Маршрутизацию между автономными системами производят протоколы внешнего шлюза (Exterior Gateway Protocols - EGPs). Примером протокола внешнего шлюза является протокол BGP, который работает на граничных маршрутизаторах автономных систем (рис. 9.1).
Маршрутизирующие протоколы, работающие внутри автономных систем, в свою очередь, подразделяются на протоколы вектора расстояния (distance-vector) и протоколы состояния канала (link-state). Протоколы distance-vector определяют расстояние и направление, т.е. вектор некоторого соединения в составной сети. Расстояние может быть выражено в количестве маршрутизаторов или переходов (hop count) в соединении на пути от узла источника к адресату назначения или других значениях метрики. При использовании алгоритма distance-vector маршрутизаторы посылают всю или часть таблицы маршрутизации соседним (смежным) маршрутизаторам через определенные интервалы времени. В таких протоколах как RIP, обмен обновлениями (update) или модификациями происходит, даже если в сети нет никаких изменений, на что затрачивается довольно большая часть полосы пропускания. Получив обновление маршрутной информации, маршрутизатор может заново вычислить все известные пути и произвести изменения в таблице маршрутизации.
Когда пакет прибывает на входной интерфейс, маршрутизатор должен использовать таблицу маршрутизации, чтобы определить, по какому маршруту направить пакет, т.е. на какой свой выходной интерфейс передать поступивший пакет. Выходной интерфейс связан с наиболее рациональным маршрутом к адресату назначения. Этот процесс называется коммутацией или продвижением пакета. На выходном интерфейсе пакет инкапсулируется в новый кадр, при этом маршрутизатор добавляет информацию для формирования кадра (см. Лекцию 8).
Таким образом, маршрутизатор ретранслирует пакет, используя две основных функции:
- функцию определения пути с использованием сетевой части адреса,
- функцию коммутации, принимая пакет на входной интерфейс и продвигая его на выходной интерфейс, который определяется функцией определения пути.
Определение наиболее рационального (оптимального) пути производится маршрутизатором на основе некоторого критерия – метрики. Значение метрики используется при оценке возможных путей. Метрика может включать разные параметры, например:
- полосу пропускания,
- задержку,
- надежность,
- загрузку,
- обобщенную стоимость и другие параметры сетевого соединения.
Маршрутизаторы могут использовать один какой-то параметр или комбинацию параметров метрики при выборе оптимального маршрута.
Маршрутная информация может быть сконфигурирована сетевым администратором – при этом реализуется статическая маршрутизация. Динамическая маршрутизация реализуется протоколами маршрутизации, когда маршрутная информация собирается в ходе динамического процесса обмена обновлениями (модификациями) между маршрутизаторами, который выполняется в сети.
Таким образом, протоколы маршрутизации (routing protocol) позволяют выбирать маршрутизаторам наилучший путь для данных от источника да устройства назначения. Для этого маршрутизирующие протоколы создают и поддерживают (модифицируют) таблицы маршрутизации путем обмена маршрутной информацией с другими маршрутизаторами в сети. Примерами протоколов маршрутизации являются:
RIP (Routing Information Protocol)
IGRP (Interior Gateway Routing Protocol)
EIGRP (Enhanced Interior Gateway Routing Protocol)
OSPF (Open Shortest Path First).
Маршрутизаторы способны поддерживать много независимых протоколов и таблиц маршрутизации для нескольких сетевых протоколов. Эта способность позволяет маршрутизатору передавать пакеты различных сетевых протоколов по тем же самым каналам связи.
Протоколы и устройства Уровня 2 и Уровня 3 модели OSI постоянно взаимодействуют при передаче данных по сети (рис. 9.2).
Рис.9.2. Взаимодействие протоколов и устройств
Это проявляется в виде взаимодействия таблиц ARP (табл.9.1), функционирующих на Уровне 2, и таблиц маршрутизации протоколов Уровня 3 модели OSI. Каждый компьютер и порт маршрутизатора поддерживает таблицы ARP, каждая строка которых содержит пару соответствующих IP- и MAC-адресов и функционируют только в пределах широковещательного домена, т.е. в пределах сети или подсети.
Таблица 9.1
Таблица ARP маршрутизатора А
IP адрес | МАС адрес |
192.168.1.11 | 0001AAAA1111 |
… | … |
192.168.3.11 | 0003AAAA3333 |
Таблицы маршрутизации позволяют передавать пакеты за пределы широковещательного домена. Строки таблицы маршрутизации (табл.9.2) с меткой С отображают непосредственно присоединенные к маршрутизатору сети, а с меткой R – сети, путь к которым проложен с помощью протокола RIP. В каждой строке также представлены: расстояние до сети назначения, выраженное в количестве переходов между маршрутизаторами (hop); выходной интерфейс маршрутизатора на пути к сети назначения.
Таблица 9.2
Таблица маршрутизации маршрутизатора А
Метка | Адрес сети назначения | Число переходов (hop) | Интерфейс |
C | 192.168.1.0 | 0 | F0 |
C | 192.168.3.0 | 0 | F1 |
C | 200.10.10.0 | 0 | S0 |
R | 192.168.2.0 | 1 | S0 |
R | 192.168.4.0 | 1 | S0 |
На Уровне 2 модели OSI функционируют коммутаторы, которые соединяют сегменты одной локальной сети или подсети, используя МАС-адреса. Для соединения с хостами вне локальной сети коммутатор продвигает кадр на маршрутизатор. Хост использует МАС-адрес входного интерфейса маршрутизатора как адрес назначения. Неизвестный МАС-адрес хост узнает из таблицы ARP. Маршрутизатор cверяет IP-адрес сети назначения с таблицей маршрутизации и продвигает пакет на выходной порт в соответствие с найденной строкой таблицы маршрутизации.
Поскольку коммутаторы не блокируют широковещательные передачи, то сети на коммутаторах могут быть затоплены широковещательными штормами. Маршрутизаторы блокируют широковещательные передачи, поэтому широковещательный шторм может быть только в пределах широковещательного домена (broadcast domain). Поэтому маршрутизаторы по сравнению с коммутаторами обеспечивают большую безопасность и контроль полосы пропускания.
Маршрутизаторы используют протоколы маршрутизации, чтобы создавать и поддерживать таблицы маршрутизации для определения маршрута. При этом таблицы маршрутизаторов разных фирм производителей и разных протоколов маршрутизации могут иметь несколько различающуюся маршрутную информацию. В большинстве случаев таблицы маршрутизации содержат:
Тип протокола, который идентифицирует протокол маршрутизации, который создавал каждый вход (строку) таблицы.
Следующий переход (Next-hop) – указывает адрес входного интерфейса следующего маршрутизатора на пути к адресату назначения.
Метрику, которая различается для разные протоколов.
Выходной интерфейс, через который данные должны быть отправлены к устройству назначения.
Маршрутизаторы поддерживают таблицы маршрутизации через обмен обновлениями или модификациями (update). Некоторые протоколы передают обновления периодически, например, протоколы RIP, IGRP. Другие протоколы посылают модификации только когда происходят изменения в сетевой топологии, например, OSPF, EIGRP.
Маршрутизаторы, зная информацию о пути к некоторым сетям, обмениваются этой информацией с другими маршрутизаторами. Следовательно, после таких обновлений или модификаций все маршрутизаторы в сети будут иметь согласованную информацию о маршрутах к доступным сетям. Таким образом, маршрутизирующие протоколы разделяют сетевую информацию между маршрутизаторами.
Различные протоколы маршрутизации используют разные алгоритмы при выборе маршрута, т.е. выходного порта, на который должен быть передан пакет. Алгоритм и метрика определяются целым рядом решаемых задач, таких как простота, устойчивость, гибкость, быстрая сходимость (convergence). Сходимость это процесс согласования между всеми маршрутизаторами сети о доступных маршрутах. При изменениях состояния сети необходимо, чтобы обмен модификациями восстановил согласованную сетевую информацию.
Каждый алгоритм по своему интерпретирует выбор наиболее рационального пути на основе метрики. Обычно меньшее значение метрики соответствует лучшему маршруту. Метрика может базироваться на одном или на нескольких параметрах пути. В протоколах маршрутизации наиболее часто используются следующие метрики:
Полоса пропускания (Bandwidth) – способность соединения передавать данные с некоторой скоростью, например, соединения сети Ethernet предпочтительней линии со скоростью 64 кбит/с.
Задержка (Delay) – это длительность времени прохождения пакета от источника до адресата назначения. Задержка зависит от количества промежуточных соединений и их типов, объема буферных устройств маршрутизаторов, сходимости сети и расстояния между узлами. Загрузка (Load) – загрузка определяется количеством информации, загружающей сетевые ресурсы (маршрутизаторы и каналы). Чем больше загрузка, тем дольше пакет будет в пути.
Надежность (Reliability) – надежность определяется интенсивностью ошибок на каждом сетевом соединении.
Количество переходов (Hop count) – это количество маршрутизаторов, через которые пакет должен пройти на пути к адресату назначения (число переходов от маршрутизатора к маршрутизатору).
Стоимость (Cost) –это обобщенный параметр затрат на передачу пакета к адресату назначения. Обычно стоимость имеет произвольное значение, назначенное администратором. Часто стоимость базируется на полосе пропускания.
- Федеральное агентство связи
- Государственное образовательное учреждение высшего профессионального образования «Поволжский государственный университет телекоммуникаций и информатики»
- Оглавление
- Предисловие Настоящий курс лекций предназначен для студентов дневной и заочной форм обучения, изучающих аналогичную дисциплину, специальностей:
- Введение
- Лекция 1. Основы построения сетей
- 1.1. Основы сетевых технологий
- 1.2. Классификация сетей передачи данных
- 1.3. Семиуровневая модель взаимодействия открытых систем
- Контрольный тест по Лекции 1
- Лекция 2. Верхние уровни моделей osi, tcp/ip
- 2.1. Прикладной уровень
- Система доменных имен dns
- Протокол http
- Протоколы передачи файлов ftp и tftp
- Протокол разделения сетевых ресурсов smb
- Приложение peer-to-peer (p2p)
- Протоколы передачи электронной почты
- Протокол удаленного доступа Telnet
- 2.2. Транспортный уровень моделей osi, tcp/ip
- Установление соединения
- Управление потоком данных
- Контрольный тест по Лекции 2
- Лекция 3. Нижние уровни модели сети
- 3.1. Физический уровень. Медные кабели
- 3. 2. Волоконно-оптические кабели
- 3.3. Беспроводная среда
- 3.4. Топология сетей
- Контрольный тест по Лекции 3
- Лекция 4. Канальный уровень. Локальные сети
- 4.1. Подуровни llc и mac
- 4.2. Локальные сети технологии Ethernet
- 4.3. Коммутаторы в локальных сетях
- Режимы коммутации
- Протокол охватывающего дерева (Spanning-Tree Protocol)
- Контрольный тест по Лекции 4
- Лекция 5. Ethernet-совместимые технологии
- 5.1. Технология Fast Ethernet
- 5.2. Технология Gigabit Ethernet
- 5.3. Технология 10-Gigabit Ethernet
- Контрольный тест по Лекции 5
- Лекция 6. Принципы и средства межсетевого взаимодействия
- 6.1. Маршрутизаторы в сетевых технологиях
- 6.2. Принципы маршрутизации
- Протокол arp
- Контрольный тест по Лекции 6
- Лекция 7. Адресация в ip - сетях
- 7.1. Логические адреса версии iPv4
- 7.2. Формирование подсетей
- 7.3. Частные и общедоступные адреса
- Контрольный тест по Лекции 7
- Лекция 8. Функционирование маршрутизаторов
- 8.1. Назначение ip-адресов
- 8.2. Передача данных в сетях с маршрутизаторами
- 8.3. Сетевые протоколы. Формат пакета протокола ip
- Контрольный тест по Лекции 8
- Лекция 9. Протоколы маршрутизации
- 9.1. Общие сведения о маршрутизирующих протоколах
- 9.2. Протоколы вектора расстояния и состояния канала
- Меры борьбы с маршрутными петлями
- Контрольный тест по Лекции 9
- Лекция 10. Основы конфигурирования маршрутизаторов
- 10.1. Режимы конфигурирования маршрутизаторов
- 10.2. Создание начальной конфигурации маршрутизатора
- 10.3. Конфигурирование интерфейсов
- Контрольный тест по Лекции 10
- Лекция 11. Конфигурирование маршрутизации
- 11.1. Конфигурирование статической маршрутизации
- Конфигурирование статической маршрутизации по умолчанию
- 11.2. Конфигурирование конечных узлов и верификация сети
- 11.3. Динамическая маршрутизация. Конфигурирование протокола rip
- Конфигурирование динамической маршрутизации по умолчанию
- Контрольный тест по Лекции 11
- Лекция 12. Протокол маршрутизации eigrp
- 12.1. Общие сведения о протоколе eigrp
- 12.2. Конфигурирование протокола eigrp
- Контрольный тест по Лекции 12
- Лекция 13. Протокол маршрутизации ospf
- 13.1. Общие сведения о протоколе ospf
- Метрика протокола ospf
- 13.2. Конфигурирование протокола ospf
- Контрольный тест по Лекции 13
- Лекция 14. Сетевые фильтры
- 14.2. Конфигурирование стандартных списков доступа
- 14.3. Конфигурирование расширенных списков доступа
- Для этого создается список доступа:
- Именованные списки доступа
- Контроль списков доступа
- Контрольный тест по Лекции 14
- Лекция 15. Конфигурирование коммутаторов
- 15.1. Общие вопросы конфигурирования коммутаторов
- Адресация коммутаторов, конфигурирование интерфейсов
- 15.2. Управление таблицей коммутации
- 15.3. Конфигурирование безопасности на коммутаторе
- Контрольный тест по Лекции 15
- Лекция 16. Виртуальные локальные сети
- 16.1. Общие сведения о виртуальных сетях
- 16.2. Конфигурирование виртуальных сетей
- 16.3. Маршрутизация между виртуальными локальными сетями
- Конфигурирование транковых соединений
- Контрольный тест по Лекции 16
- Заключение
- Список литературы
- Список терминов и сокращений