2 Теоретическая часть
2.1 Сведения о графах
Граф G (рис.2.1.1) задается множеством точек (вершин) х1, х2,..., хn. (которое обозначается через Х) и множеством линий (ребер) а1, а2,...,аm. (которое обозначается символом А), соединяющих между собой все или часть этих точек. Таким образом, граф G полностью задается (и обозначается) парой (Х, А). Если ребра из множества А ориентированы, что обычно показывается стрелкой, то они называются дугами, и граф с такими ребрами называется ориентированным графом.
рис.2.1.1
рис.2.1.2
Например, если дорога имеет не двух-, а одностороннее движение то направление этого движения будет показано стрелкой.
Если ребра не имеют ориентации, то граф называется неориентированным, (двухстороннее движение).
В ориентированном графе дуга обозначается упорядоченной парой, состоящей из начальной и конечной вершин, ее направление предполагается заданным от первой вершины ко второй.
Путем (или ориентированным маршрутом) ориентированного графа называется последовательность дуг, в которой конечная вершина всякой дуги, отличной от последней, является начальной вершиной следующей.
Так, на рис. 2.1.2 путями являются последовательности дуг:
а6, а5, а9, а8, а4. (1)
а1, а6, а5, а9. (2)
а1, а6, а5, а9, а10, а6, а4. (3)
Ориентированной цепью (орцепью) называется такой путь, в котором каждая дуга используется не больше одного раза.
Простой орцепью называется такой путь, в котором каждая вершина используется не более одного раза. Например, путь (2).
Маршрут есть неориентированный “двойник” пути, и это понятие рассматривается в тех случаях, когда можно пренебречь направленностью дуг в графе. Таким образом, маршрут есть последовательность ребер ä1, ä2,..., äq, в которой каждое ребро аi, за исключением первого и последнего ребер, связано с ребрами аi-1 и аi+1 своими концевыми вершинами. Последовательности дуг:
ä2, ä4, ä8, ä10, (4)
ä2, ä7, ä8, ä4, ä3, (5)
ä10 , ä7 , ä4 , ä8 , ä7 , ä2. (6)
в графе, изображенном на рис. 2.1.2, являются маршрутами; две точки над символом дуги означают, что ее ориентацией пренебрегают, т.е. дуга рассматривается как неориентированное ребро. Также путь или маршрут можно изображать последовательностью вершин. Например, путь (1) будет выглядеть следующем образом: х2, х5, х4, х3, х5, х6. Иногда дугам графа приписываются числа, называемые весом, стоимостью, или длиной этой дуги. В этом случае граф называется графом с взвешенными дугами. А если вес приписывается вершинам графа, то тогда получается граф с взвешенными вершинами. Если в графе веса приписаны и дугам и вершинам, то он называется просто взвешенным. При рассмотрении пути µ представленного последовательностью дуг (ä1, ä2,..., äq), за его вес принимается число l(µ), равное сумме весов всех дуг, входящих в µ, т.е.
- Курсовая работа
- Пояснительная записка
- Реферат
- 1 Постановка задачи и сфера её применения
- 2 Теоретическая часть
- 2.2 Алгоритм Дейкстры
- 3 Особенности работы в среде
- 4 Программная реализация
- 4.1 Описание алгоритма и структуры программы
- 4.2 Описание использованных программных средств
- 5 Инструкция пользователя