Электронный этап развития вычислительной техники
В силу физико-технической природы релейная ВТ не позволяла существенно повысить скорость вычислений; для этого потребовался переход на электронные безынерционные элементы высокого быстродействия.
К началу 40-х г.г. 20 в. электроника уже располагала необходимым набором таких элементов. С изобретением М. Бонч-Бруевичем в 1913 г. триггера (электронное реле двухламповый симметричный усилитель с положительной обратной связью в качестве базовой компоненты использует электронную вакуумную лампу триод, изобретенную в 1906 г.) появилась реальная возможность создания быстродействующей электронной ВТ.
Электронные вычислительные машины (ЭВМ) ознаменовали собой новое направление в ВТ, интенсивно развиваемое и в настоящее время в различных направлениях.
Первой ЭВМ принято считать машину ENIAC, созданную в США в конце 1945 г. Первоначально предназначенная для решения задач баллистики, машина оказалась универсальной, т.е. способной решать различные задачи. Главным консультантом проекта являлся Д. Моучли, а главным конструктором - Д. Эккерт. Проект создания ENIAC, начатый в апреле 1943 г., был полностью завершен в декабре 1945 г. В качестве официальной апробации ЭВМ была выбрана задача оценки принципиальной возможности создания водородной бомбы. Машина успешно выдержала испытания, обработав около 1 млн. перфокарт фирмы IBM с исходными данными.
Полностью завершенная в 1952 г., ЭВМ содержала более 3500 ламп 19-ти различных типов и около 27000 других электронных элементов.
В конце 1944 г. к проекту в качестве научного консультанта был подключен 41-летний Джон фон Нейман, к тому времени уже имевший большой авторитет в научном мире как математик, внесший значительный вклад в квантовую механику и создавший математическую теорию игр. Переработав идеи Эккерта и Мочли, а также, оценив ограничения «ЭНИАК», Джон фон Нейман написал широко цитируемый отчёт, описывающий проект компьютера (EDVAC), в котором и программа, и данные хранятся в единой универсальной памяти. Принципы построения этой машины стали известны под названием «архитектура фон Неймана» и послужили основой для разработки первых по-настоящему гибких, универсальных цифровых компьютеров. Принципы организации ЭВМ, предложенные фон Нейманом, стали общепринятыми.
Находясь в творческой командировке в группе разработчиков EDVAC и ознакомившись с идеями Дж. фон Неймана, М. Уилкс, вернувшись в Кэмбриджский университет (Англия), смог на два года раньше (в мае 1949 г.) завершить разработку первой в мире ЭВМ с хранимыми в памяти программами. Его компьютер EDSAC работал в двоичной с.с., выполнял одноадресные команды в количестве 18 и оперировал как с короткими (17 бит), так и с длинными (35 бит) словами.
Компьютер EDSAC положил начало новому этапу развития ВТ - первому поколению универсальных ЭВМ. За первым поколением ЭВМ последовали все остальные этапы стремительного развития компьютеров.
Применение компьютеров. Первые компьютеры создавались исключительно для вычислений (что отражено в названиях «компьютер» и «ЭВМ»). Даже самые примитивные компьютеры в этой области во много раз превосходят людей. Не случайно первым высокоуровневым языком программирования был Фортран, предназначенный исключительно для выполнения математических расчётов.
Вторым крупным применением были базы данных. Прежде всего, они были нужны правительствам и банкам. Базы данных требуют уже более сложных компьютеров с развитыми системами ввода-вывода и хранения информации. Для этих целей был разработан язык Кобол. Позже появились СУБД со своими собственными языками программирования.
Третьим применением было управление всевозможными устройствами. Здесь развитие шло от узкоспециализированных устройств (часто аналоговых) к постепенному внедрению стандартных компьютерных систем, на которых запускаются управляющие программы. Кроме того, всё большая часть техники начинает включать в себя управляющий компьютер.
Моделирование структуры молекулы при помощи компьютерной программы. Наконец, компьютеры развились настолько, что стали главным информационным инструментом, как в офисе, так и дома. Теперь почти любая работа с информацией зачастую осуществляется через компьютер — будь то набор текста или просмотр фильмов. Это относится и к хранению информации, и к её пересылке по каналам связи. Основное применение современных домашних компьютеров — навигация в Интернете и игры.
Современные суперкомпьютеры используются для моделирования сложных физических и биологических процессов. Например, для моделирования ядерных реакций или климатических изменений. Некоторые проекты проводятся при помощи распределённых вычислений, когда большое число относительно слабых компьютеров одновременно работает над небольшими частями общей задачи, формируя таким образом очень мощный компьютер.
Наиболее сложным и слаборазвитым применением компьютеров является искусственный интеллект — применение компьютеров для решения таких задач, где нет чётко определённого более или менее простого алгоритма.
- Оглавление
- История развития вычислительной техники
- Ручной этап развития вычислительной техники
- Механический этап развития вычислительной техники
- Электромеханический этап развития вычислительной техники
- Электронный этап развития вычислительной техники
- Классификация эвм
- Классификация эвм по принципу действия
- Классификация эвм по этапам создания
- Классификация эвм по назначению
- Классификация эвм по размерам и функциональным возможностям
- Архитектура эвм
- Основные схемы и принципы построения эвм
- Состав системного блока
- Состав и характеристики центрального процессора
- Устройства памяти эвм
- Устройства ввода-вывода
- Компьютерные сети
- Основные характеристики и классификация компьютерных сетей
- Топологии сетей
- Модель взаимосвязи открытых систем
- Сетевое оборудование
- Виды программного обеспечения эвм
- Основные понятия алгебры логики
- Основные понятия и определения информатики Информация, сообщения, сигналы, данные. Свойства информации
- Информационные процессы и технологии
- Понятие количества информации
- Технология обработки информации Технология обработки текстовой информации
- Технология обработки графической информации
- Технология обработки числовой информации
- Технология хранения, поиска и сортировки информации. Базы данных
- Табличные базы данных
- Иерархические базы данных
- Реляционные базы данных
- 1. Тип данных
- 2. Домен
- 3. Схема отношения, схема базы данных
- 4. Кортеж, отношение
- Система управления базами данных (субд)
- Алгоритмизация и программирование
- Алгоритм и его свойства
- Языки программирования
- Краткая история и классификация языков программирования
- Основные элементы алгоритмического языка
- Инструментальные системы программирования
- Моделирование и формализация
- 1) Классификация моделей по области использования:
- 2) Классификация моделей по фактору времени:
- Операционные системы и файловая структура диска Понятие операционной системы. Виды операционных систем
- Файловая структура диска
- Организация компьютерной безопасности и защиты информации