Общая шина
Общая шина это тип сетевой топологии, в которой рабочие станции расположены вдоль одного участка кабеля, называемого сегментом.
Рис. 4.15 Топология Общая шина
Топология Общая шина (рис. 4.2) предполагает использование одного кабеля, к которому подключаются все компьютеры сети. В случае топологии Общая шина кабель используется всеми станциями по очереди. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Все сообщения, посылаемые отдельными компьютерами, принимаются и прослушиваются всеми остальными компьютерами, подключенными к сети. Рабочая станция отбирает адресованные ей сообщения, пользуясь адресной информацией. Надежность здесь выше, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом. Поиск неисправности в сети затруднен. Кроме того, так как используется только один кабель, в случае обрыва нарушается работа всей сети. Шинная топология - это наиболее простая и наиболее распространенная топология сети.
Примерами использования топологии общая шина является сеть 10Base–5 (соединение ПК толстым коаксиальным кабелем) и 10Base–2 (соединение ПК тонким коаксиальным кабелем).
Кольцо
Рис. 4.16 Топология Кольцо
Кольцо – это топология ЛВС, в которой каждая станция соединена с двумя другими станциями, образуя кольцо (рис.4.3). Данные передаются от одной рабочей станции к другой в одном направлении (по кольцу). Каждый ПК работает как повторитель, ретранслируя сообщения к следующему ПК, т.е. данные, передаются от одного компьютера к другому как бы по эстафете. Если компьютер получает данные, предназначенные для другого компьютера, он передает их дальше по кольцу, в ином случае они дальше не передаются. Очень просто делается запрос на все станции одновременно. Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них, вся сеть парализуется. Подключение новой рабочей станции требует краткосрочного выключения сети, т.к. во время установки кольцо должно быть разомкнуто. Топология Кольцо имеет хорошо предсказуемое время отклика, определяемое числом рабочих станций.
Чистая кольцевая топология используется редко. Вместо этого кольцевая топология играет транспортную роль в схеме метода доступа. Кольцо описывает логический маршрут, а пакет передается от одной станции к другой, совершая в итоге полный круг. В сетях Token Ring кабельная ветвь из центрального концентратора называется MAU (Multiple Access Unit). MAU имеет внутреннее кольцо, соединяющее все подключенные к нему станции, и используется как альтернативный путь, когда оборван или отсоединен кабель одной рабочей станции. Когда кабель рабочей станции подсоединен к MAU, он просто образует расширение кольца: сигналы поступают к рабочей станции, а затем возвращаются обратно во внутреннее кольцо
Звезда
Звезда – это топология ЛВС (рис.4.4), в которой все рабочие станции присоединены к центральному узлу (например, к концентратору), который устанавливает, поддерживает и разрывает связи между рабочими станциями. Преимуществом такой топологии является возможность простого исключения неисправного узла. Однако, если неисправен центральный узел, вся сеть выходит из строя.
В этом случае каждый компьютер через специальный сетевой адаптер подключается отдельным кабелем к объединяющему устройству. При необходимости можно объединять вместе несколько сетей с топологией Звезда, при этом получаются разветвленные конфигурации сети. В каждой точке ветвления необходимо использовать специальные соединители (распределители, повторители или устройства доступа).
Рис. 4.17 Топология Звезда
Примером звездообразной топологии является топология Ethernet с кабелем типа Витая пара 10BASE-T, центром Звезды обычно является Hub.
Звездообразная топология обеспечивает защиту от разрыва кабеля. Если кабель рабочей станции будет поврежден, это не приведет к выходу из строя всего сегмента сети. Она позволяет также легко диагностировать проблемы подключения, так как каждая рабочая станция имеет свой собственный кабельный сегмент, подключенный к концентратору. Для диагностики достаточно найти разрыв кабеля, который ведет к неработающей станции. Остальная часть сети продолжает нормально работать.
Однако звездообразная топология имеет и недостатки. Во-первых, она требует много кабеля. Во-вторых, концентраторы довольно дороги. В-третьих, кабельные концентраторы при большом количестве кабеля трудно обслуживать. Однако в большинстве случаев в такой топологии используется недорогой кабель типа витая пара. В некоторых случаях можно даже использовать существующие телефонные кабели. Кроме того, для диагностики и тестирования выгодно собирать все кабельные концы в одном месте. По сравнению с концентраторами ArcNet концентраторы Ethernet и MAU Token Ring достаточно дороги. Новые подобные концентраторы включают в себя средства тестирования и диагностики, что делает их еще более дорогими.
- Оглавление
- Введение
- Обзор и архитектура вычислительных сетей
- Основные определения и термины
- Преимущества использования сетей
- Архитектура сетей
- Архитектура терминал – главный компьютер
- Одноранговая архитектура
- Архитектура клиент – сервер
- Выбор архитектуры сети
- Вопросы к лекции
- Семиуровневая модель osi
- Взаимодействие уровней модели osi
- Прикладной уровень (Application layer)
- Уровень представления данных (Presentation layer)
- Сеансовый уровень (Session layer)
- Транспортный уровень (Transport Layer)
- Сетевой уровень (Network Layer)
- Канальный уровень (Data Link)
- Физический уровень (Physical Layer)
- Сетезависимые протоколы
- Стеки коммуникационных протоколов
- Вопросы
- Стандарты и стеки протоколов
- Спецификации стандартов
- Протоколы и стеки протоколов
- Сетевые протоколы
- Транспортные протоколы
- Прикладные протоколы
- Стек osi
- Архитектура стека протоколов Microsoft tcp/ip
- Уровень Приложения
- Уровень транспорта
- Протокол управления передачей (tcp)
- Пользовательский протокол дейтаграмм (udp)
- Межсетевой уровень
- Протокол Интернета ip
- Адресация в ip-сетях
- Протоколы сопоставления адреса arp и rarp
- Протокол icmp
- Протокол igmp
- Уровень сетевого интерфейса
- Вопросы
- Топология вычислительной сети и методы доступа
- Топология вычислительной сети
- Виды топологий
- Общая шина
- Методы доступа
- Вопросы
- Лвс и компоненты лвс
- Основные компоненты
- Рабочие станции
- Сетевые адаптеры
- Файловые серверы
- Сетевые операционные системы
- Сетевое программное обеспечение
- Защита данных
- Использование паролей и ограничение доступа
- Типовой состав оборудования локальной сети
- Вопросы
- Физическая среда передачи данных
- Кабели связи, линии связи, каналы связи
- Типы кабелей и структурированные кабельные системы
- Кабельные системы
- Типы кабелей
- Кабель типа «витая пара» (twisted pair)
- Коаксиальные кабели
- Оптоволоконный кабель
- Кабельные системы Ethernet
- Беспроводные технологии
- Радиосвязь
- Связь в микроволновом диапазоне
- Инфракрасная связь
- Вопросы
- Сетевые операционные системы
- Структура сетевой операционной системы
- Клиентское программное обеспечение
- Редиректоры
- Распределители
- Имена unc
- Серверное программное обеспечение
- Клиентское и серверное программное обеспечение
- Выбор сетевой операционной системы
- Одноранговые nos и nos с выделенными серверами
- Nos для сетей масштаба предприятия
- Сети отделов
- Сети кампусов
- Корпоративные сети
- Сетевые ос NetWare фирмы Novell Назначение ос NetWare
- Структурная схема oc
- Сетевая файловая система
- Основные сетевые возможности
- Защита информации
- Семейство сетевых ос Windows nt
- Структура Windows nt
- Сетевые средства
- Состав Windows nt
- Свойства Windows nt
- Области использования Windows nt
- Семейство ос unix
- Программы
- Ядро ос unix
- Файловая система
- Принципы защиты
- Идентификаторы пользователя и группы пользователей
- Защита файлов
- Обзор Системы Linux
- Графический интерфейс пользователя
- Работа с сетью
- Сетевые файловые системы
- Вопросы
- Требования, предъявляемые к сетям
- Производительность
- Надежность и безопасность
- Прозрачность
- Поддержка разных видов трафика
- Управляемость
- Управление эффективностью
- Управление конфигурацией
- Управление учетом использования ресурсов
- Управление неисправностями
- Управление защитой данных
- Совместимость
- Вопросы
- Сетевое оборудование
- Сетевые адаптеры, или nic (Network Interface Card). Назначение.
- Настройка сетевого адаптера и трансивера
- Функции сетевых адаптеров
- Базовый, или физический, адрес
- Типы сетевых адаптеров
- Повторители и концентраторы
- Планирование сети с хабом
- Преимущества концентратора
- Мосты и коммутаторы
- Различие между мостом и коммутатором
- Коммутатор
- Коммутатор локальной сети
- Маршрутизатор
- Различие между маршрутизаторами и мостами
- Вопросы
- Русские термины
- Английские термины
- Английские сокращения
- Литература