3.1 Алгоритмы замены(подстановки)
В этом наиболее простом методе символы шифруемого текста заменяются другими символами, взятыми из одного- (одно- или моноалфавитная подстановка) или нескольких (много- или полиалфавитная подстановка) алфавита.
Самой простой разновидностью является прямая (простая) замена, когда буквы шифруемого сообщения заменяются другими буквами того же самого или некоторого другого алфавита. Таблица замены может иметь следующий вид(таблица 3.1.1):
Исходные символы шифруе-мого текста | a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | р | q | r | s | t | u | v | w | x | y | z |
Заменяющие символы | s | р | x | l | r | z | i | m | a | y | e | d | w | t | b | g | v | n | j | o | c | f | h | q | u | k |
Таблица 3.1.1 Таблица простой замены
Используя эту таблицу, зашифруем текст: In this book the reader will find a comрrehensive survey... Получим следующее зашифрованное сообщение: At omiy рbbe omr nrsirn fadd zail s xbwgnrmrtjafr jcnfru... Однако такой шифр имеет низкую стойкость, так как зашифрованный текст имеет те же статистические характеристики, что и исходный. Например, текст на английском языке содержит символы со следующими частотами появления (в порядке убывания): Е — 0,13 , Т — 0,105 , А — 0,081 , О — 0,079 и т.д. В зашифрованном тексте наибольшие частоты появления в порядке убывания имеют буквы R — 0,12 , O — 0,09 , A и N по 0,07.Естественно предположить, что символом R зашифрована буква Е, символом О — буква Т и т.д. Это действительно соответствует таблице замены. Дальнейшая расшифровка не составляет труда.
Если бы объем зашифрованного текста был намного больше, чем в рассмотренном примере, то частоты появления букв в зашифрованном тексте были бы еще ближе к частотам появления букв в английском алфавите и расшифровка была бы еще проще. Поэтому простую замену используют редко и лишь в тех случаях, когда шифруемый текст короток.
Для повышения стойкости шрифта используют полиалфавитные подстановки, в которых для замены символов исходного текста используются символы нескольких алфавитов. Известно несколько разновидностей полиалфавитной подстановки, наиболее известными из которых являются одно- (обыкновенная и монофоническая) и многоконтурная.
При полиалфавитной одноконтурной обыкновенной подстановке для замены символов исходного текста используется несколько алфавитов, причем смена алфавитов осуществляется последовательно и циклически, т.е. первый символ заменяется соответствующим символом первого алфавита, второй — символом второго алфавита и т.д., пока не будут использованы все выбранные алфавиты. После этого использование алфавитов повторяется.
Схема шифрования Вижинера.
Таблица Вижинера представляет собой квадратную матрицу с n2элементами, где n — число символов используемого алфавита. На Рис.3.1.2 показана верхняя часть таблицы Вижинера для кириллицы. Каждая строка получена циклическим сдвигом алфавита на символ. Для шифрования выбирается буквенный ключ, в соответствии с которым формируется рабочая матрица шифрования.
а | б | В | г | д | е | ё | ж | з | и | й | к | л | м | н | О | п | р | с | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я |
б | в | Г | д | е | ё | ж | з | и | й | к | л | м | н | о | П | р | с | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а |
в | г | Д | е | ё | ж | з | и | й | к | л | м | н | о | п | Р | с | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а | б |
г | д | Е | ё | ж | з | и | й | к | л | м | н | о | п | р | С | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а | б | в |
д | е | Ё | ж | з | и | й | к | л | м | н | о | п | р | с | Т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а | б | в | г |
е | ё | ж | з | и | й | к | л | м | н | о | п | р | с | т | У | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а | б | в | г | д |
И т.д. до 33-ей строки.. |
Рис. 3.1.2 Таблица Вижинера
Осуществляется это следующим образом. Из полной таблицы выбирается первая строка и те строки, первые буквы которых соответствуют буквам ключа. Первой размещается первая строка, а под нею — строки, соответствующие буквам ключа в порядке следования этих букв в ключе шифрования. Пример такой рабочей матрицы для ключа «книга» приведен на Рис. 3.1.3.
а | б | в | г | д | е | ё | ж | з | и | й | к | л | м | н | О | п | р | С | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я |
к | л | м | н | о | п | р | с | т | у | ф | х | ц | ч | ш | Щ | ъ | ы | Ь | э | ю | я | а | б | в | г | д | е | ё | ж | з | и | й |
н | о | п | р | с | т | у | ф | х | ц | ч | ш | щ | ъ | ы | Ь | э | ю | Я | а | б | в | г | д | е | ё | ж | з | и | й | к | л | м |
и | й | к | л | м | н | о | п | р | с | т | у | ф | х | ц | Ч | ш | щ | Ъ | ы | ь | э | ю | я | а | б | в | г | д | е | ё | ж | з |
г | д | Е | ё | ж | з | и | й | к | л | м | н | о | п | р | С | т | у | Ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я | а | б | в |
а | б | в | г | д | е | ё | ж | з | и | й | к | л | м | н | О | п | р | С | т | у | ф | х | ц | ч | ш | щ | ъ | ы | ь | э | ю | я |
Рис. 3.1.3 Рабочая матрица шифрования для ключа «книга».
Процесс шифрования осуществляется следующим образом:
1. под каждой буквой шифруемого текста записываются буквы ключа. Ключ при
этом повторяется необходимое число раз.
2. каждая буква шифруемого текста заменяется по подматрице буквами находящимися на пересечении линий, соединяющих буквы шифруемого текста в первой строке подматрицы и находящимися под ними букв ключа.
3. полученный текст может разбиваться на группы по несколько знаков.
Пусть, например, требуется зашифровать сообщение: максимально допустимой ценой является пятьсот руб. за штуку. В соответствии с первым правилом записываем под буквами шифруемого текста буквы ключа. Получаем: максимально допустимой ценой является пятьсот руб. за штуку
книгакнигак нигакнигак нигак нигакниг акнигак ниг ак нигак
Дальше осуществляется непосредственное шифрование в соответствии со вторым правилом, а именно: берем первую букву шифруемого текста (М) и соответствующую ей букву ключа (К); по букве шифруемого текста (М) входим в рабочую матрицу шифрования и выбираем под ней букву, расположенную в строке, соответствующей букве ключа (К),— в нашем примере такой буквой является Ч; выбранную таким образом букву помещаем в зашифрованный текст. Эта процедура циклически повторяется до зашифрования всего текста.
Эксперименты показали, что при использовании такого метода статистические характеристики исходного текста практически не проявляются в зашифрованном сообщении. Нетрудно видеть, что замена по таблице Вижинера эквивалентна простой замене с циклическим изменением алфавита, т.е. здесь мы имеем полиалфавитную подстановку, причем число используемых алфавитов определяется числом букв в слове ключа. Поэтому стойкость такой замены определяется произведением стойкости прямой замены на число используемых алфавитов, т.е. число букв в ключе.
Расшифровка текста производится в следующей последовательности:
1. над буквами зашифрованного текста последовательно надписываются буквы ключа, причем ключ повторяется необходимое число раз.
2. в строке подматрицы Вижинера, соответствующей букве ключа отыскивается буква, соответствующая знаку зашифрованного текста. Находящаяся под ней буква первой строки подматрицы и будет буквой исходного текста.
3. полученный текст группируется в слова по смыслу.
Одним из недостатков шифрования по таблице Вижинера является то, что при небольшой длине ключа надежность шифрования остается невысокой, а формирование длинных ключей сопряжено с трудностями.
Нецелесообразно выбирать ключи с повторяющимися буквами, так как при этом стойкость шифра не возрастает. В то же время ключ должен легко запоминаться, чтобы его можно было не записывать. Последовательность же букв не имеющих смысла, запомнить трудно.
С целью повышения стойкости шифрования можно использовать усовершенствованные варианты таблицы Вижинера. Приведу только некоторые из них:
· во всех (кроме первой) строках таблицы буквы располагаются в произвольном порядке.
· В качестве ключа используется случайность последовательных чисел. Из таблицы Вижинера выбираются десять произвольных строк, которые кодируются натуральными числами от 0 до 10. Эти строки используются в соответствии с чередованием цифр в выбранном ключе.