logo search

9.9.Сетевой уровень модели Internet

К сетевому уровню относятся протоколы, которые отвечают за отправку и получение данных, или, другими словами, за соединение отправителя и получателя.

Протокол IP. Является самым главным во всей иерархии протоколов семейства TCP/IP. Именно он используется для управления рассылкой TCP/IP пакетов по сети Internet. Важнейшие функции протокола IP:

определение пакета, который является базовым понятием и единицей передачи данных в сети Internet; многие зарубежные авторы называют такой IP-пакет датаграммой;

определение адресной схемы, которая используется в сети Internet;

передача данных между канальным уровнем (уровнем доступа к сети) и транспортным уровнем;

маршрутизация пакетов по сети, т.е. передача пакетов от одного шлюза к другому с целью передачи пакета узлу-получателю;

"нарезка" и сборка из фрагментов пакетов транспортного уровня.

Главными особенностями протокола IP является отсутствие ориентации на физическое или виртуальное соединение. Это значит, что прежде чем послать пакет в сеть, модуль операционной системы, реализующий IP, не проверяет возможность установки соединения, т.е. никакой управляющей информации кроме той, что содержится в самом IP-пакете, по сети не передается. Кроме этого, IP не заботится о проверке целостности информации в поле данных пакета, что заставляет отнести его к протоколам ненадежной доставки. Целостность данных проверяется протоколами транспортного уровня (TCP) или протоколами приложений.

Таким образом, вся информация о пути, по которому должен пройти пакет, формируется в самой сети в момент прохождения пакета. Именно эта процедура и называется маршрутизацией в отличие от коммутации, которая используется для предварительного установления маршрута следования данных, по которому потом эти данные отправляют.

Принцип маршрутизации является одним из тех факторов, который обеспечил гибкость сети Internet и её преимущество в сравнении с другими сетевыми технологиями. К сетевому уровню относят также протоколы, выполняющие вспомогательные функции по отношению к IP. Это прежде всего протоколы маршрутизации RIP и OSPF, занимающиеся изучением топологии сети, определением маршрутов и составлением таблиц маршрутизации, на основании которых протокол IP перемещает пакеты в нужном направлении. Также к сетевому уровню относятся ещё два протокола:

ICMP (Internet Control Message Protocol). Протокол используется для рассылки информационных и управляющих сообщений. При этом используются следующие виды сообщений:

Flow control - если принимающий узел (шлюз или реальный получатель информации) не успевает перерабатывать информацию, то данное сообщение приостанавливает отправку пакетов по сети;

Detecting unreachаble destination - если пакет не может достичь места назначения, то шлюз, который не может доставить пакет, сообщает об этом отправителю пакета. Информировать о невозможности доставки сообщения может и машина, чей IP-адрес указан в пакете. Только в этом случае речь будет идти о портах TCP и UDP, о чем будет сказано чуть позже;

Redirect routing - это сообщение посылается в том случае, если шлюз не может доставить пакет, но у него есть на этот счет некоторые соображения, а именно адрес другого шлюза;

Checking remote host - в этом случае используется так называемое ICMP Echo Message. Если необходимо проверить наличие стека TCP/IP на удаленной машине, то на нее посылается сообщение этого типа. Как только система получит это сообщение, она немедленно подтвердит его получение;

IGMP (Group Management Protocol). Это протокол групповой рассылки, направляющий пакеты сразу по нескольким адресам.

Развитие протокола IP. Протокол IPv6 (Internet Protocol version 6)- это новая версия протокола IP, призванная решить проблемы, с которыми столкнулась предыдущая версия (IPv4) при её использовании в Internet. В настоящее время протокол IPv6 уже используется в нескольких сотнях сетей по всему миру, но пока ещё не получил широкого распространения в Internet, где преимущественно используется IPv4. Протокол был разработан организацией IETF.

Протокол IP в настоящее время столкнулся с рядом проблем, таких как проблема масштабируемости сети, неприспособленность протокола к передаче мультисервисной информации с поддержкой различных классов обслуживания, включая обеспечение информационной безопасности. Указанные проблемы обусловили развитие классической версии протокола IPv4 в направлении разработки версии IPv6. При этом к проблемам масштабируемости протокола IPv4 следует отнести следующие:

недостаточность объёма 32-битного адресного пространства;

сложность агрегирования маршрутов, разрастание таблиц маршрутизации;

сложность массового изменения IP-адресов;

относительная сложность обработки заголовков пакетов IPv4.

Кроме того, масштабируемость IP-сетей следует рассматривать не только с точки зрения увеличения числа узлов, но и с точки зрения повышения скорости передачи и уменьшения задержек при маршрутизации.

В связи с этим было разработано множество версий протокола IP для различных вычислительных платформ и операционных систем. До некоторого момента существовало несколько альтернативных вариантов протокола IP нового поколения. В июле 1994 года была принята версия протокола нового поколения, получившего название IPv6. В технической литературе эту версию протокола ещё называют IPng (IP next generation), хотя иногда под IPng понимают все варианты модернизации IP, включая также не вошедшие в проект IPv6, но продолжающие развиваться. Документом, фиксирующим появление IPv6, является спецификация RFC 1752 "The Recommendation for the IP Next Generation Protocol". Базовый набор протоколов IPv6 был принят IETF в сентябре 1995 г. и получил статус Proposed Standard.

В спецификации RFC 1726 представлен набор функций, основными среди них являются:

масштабируемость: идентификация и определение адресов как минимум 1012 конечных систем и 109 индивидуальных сетей;

топологическая гибкость: архитектура маршрутизации и протокол должны работать в сетях с различной топологией;

преемственность: обеспечение чёткого плана перехода от существующей версии IPv4;

независимость от среды передачи: работа среди множества сетей с различными средами передачи данных со скоростями до сотен гигабит в секунду;

автоматическое конфигурирование хостов и маршрутизаторов;

безопасность на сетевом уровне;

мобильность: обеспечение работы с мобильными пользователями, сетями и межсетевыми системами;

расширяемость: возможность дальнейшего развития в соответствии с новыми потребностями.

В результате реализации заявленных функций важнейшие инновации IPv6 состоят в следующем:

упрощен стандартный заголовок IP-пакета;

изменено представление необязательных полей заголовка;

расширено адресное пространство;

улучшена поддержка иерархической адресации, агрегирования маршрутов и автоматического конфигурирования адресов;

введены механизмы аутентификации и шифрования на уровне IP-пакетов;

введены метки потоков данных.

При этом в IPv6 все изменения планировались таким образом, чтобы минимизировать изменения на других уровнях протокольного стека TCP/IP. В результате размер IP-адреса увеличен до 128 бит. Даже с учётом неэффективности использования адресного пространства, являющейся оборотной стороной эффективной маршрутизации и автоматического конфигурирования, этого достаточно, чтобы обеспечить объединение миллиарда сетей, как того требовали документы IETF. Обеспечена возможность простого и гибкого автоматического конфигурирования адресов для сетей произвольного масштаба и сложности. IPv6 является расширяемым протоколом, причём поля расширений (дополнительные заголовки) могут добавляться без снижения эффективности маршрутизации.