logo

6.4.Коммутаторы

Это многопортовое устройство, у которого каждый порт связан с отдельным сегментом сети. Внешне похожий на концентратор, коммутатор принимает входящий трафик через свои порты, но в отличие от концентратора, который передаёт исходящий трафик через множество портов, коммутатор передает трафик только через один порт, необходимый для достижения места назначения. Основная роль коммутаторов состоит в коммутации каналов, заключающейся в соединении на своих внутренних шинах входных и выходных цепей в зависимости от того, куда направляются данные. Иногда коммутация осуществляется с помощью буферов, без непосредственного электрического соединения.

Коммутатор обычно значительно более сложное и дорогое устройство, чем концентратор. Иногда для названия того и другого используется термин HUB, что в переводе с английского означает центр, основа, сердце. При использовании термина HUB часто непонятно, о чем идет речь, о коммутаторе или концентраторе. Путаница возникает также из-за того, что концентраторы иногда выполняют функции коммутации, а коммутаторы выполняют функции маршрутизации. Поэтому для понимания того, что есть что, надо меньше обращать внимания на название устройства, а больше на набор функций, которые оно выполняет. Коммутатор ЛВС (LAN Switch) позволяет конфигурировать сети неограниченного размера. Коммутаторы функционируют на канальном уровне, но могут поддерживать и любой протокол сетевого уровня и выполнять функции маршрутизации. Современный Switch является одновременно и маршрутизатором, и коммутатором. Преимущество коммутатора заключается в том, что он управляет сетевым трафиком. Когда концентратор производит широковещательную передачу всех кадров во все подсоединённые к нему сегменты, то каждый ПК должен остановиться и прослушать среду во избежание конфликтов. Коммутатор же передаёт трафик только одному сегменту, не активизируя остальные сегменты. Фактически, можно продолжить обмен данными с другими сегментами. Коммутация делает возможным резервирование более широкой полосы пропускания для приложений, требующих интенсивного трафика. С помощью коммутации каждый порт может иметь свой канал, допустим, на 10 Мбит/с, в то время как в концентраторе все порты одновременно используют один и тот ж канал на 10 Мбит/с (или на другой скорости).

Применение коммутаторов позволяет соединить вместе несколько сетей и воспользоваться преимуществами связи без помех, возникающих вследствие совместного использования полосы пропускания. В зависимости от местоположения коммутаторов в сети, их можно использовать для изолирования частей сети на уровне рабочих групп или магистрали. Поэтому различают коммутаторы рабочих групп и магистральные коммутаторы. Остановимся подробней на разновидностях и функциях коммутаторов. Далее будем рассматривать сетевое оборудование применительно к сети Ethernet, поскольку эта сеть в последние годы стала самой популярной и широко используемой, инфраструктура этой сети хорошо проработана.

Коммутаторы 2-го уровня. Уровень 2 (по семиуровневой модели OSI) соответствует кадрам Ethernet. Их передвижение происходит согласно MAC-адресам. Коммутаторы, работающие с адресами канального уровня, называют коммутаторами 2-го уровня (L2 - layer- 2 switch). Они могут производить весьма сложные операции. Например, ставить и убирать метки VLAN (см. ниже), распознавать приоритеты, устанавливать кадры в очереди, определять атаки, считать Ethernet-трафик, фильтровать по номерам портов и т. п.

Коммутаторы 3 уровня (L3 - layer-3 switch). Эти коммутаторы добавляют к обычным функциям маршрутизацию трафика между портами на сетевом уровне.

Популярность Internet и корпоративных сетей Intranet привела к значительному росту уровня сетевого трафика. За счет доступа пользователей к удаленным ресурсам и серверам потоки трафика становятся все менее локальными. Увеличение потока данных и делокализация трафика ведут к перегрузке маршрутизаторов. Для решения возникших задач большинство производителей сетевого оборудования решают задачу коммутации на сетевом уровне. Коммутация на сетевом уровне обеспечивает сочетание разумности маршрутизаторов и скорости коммутаторов.

Коммутаторы 4 уровня (L4 - layer-4 switch). Работают на четвёртом уровне сетевой модели. Дополнительно к функциям коммутаторов L3 могут выполнять функцию оптимального распределения сетевой нагрузки, имеют повышенную устойчивость к сбоям.

Важность коммутации уровня 4 в том, что она дает администраторам сети возможность автоматизировать коммутацию пакетов на основе приоритетов приложений. Эти устройства обычно используют уровень 4 стека TCP/IP (прикладной уровень) в дополнение к коммутации на уровне 2 и маршрутизации на уровне 3. Коммутаторы опираются на информацию уровня 4, такую как присваиваемые типам приложений стандартные номера портов Transport Control Protocol для передачи пакетов и установки их приоритетов, в зависимости от того, приложение какого типа их инициировало

Таким образом, рассматривая возможности коммутаторов разных уровней, можно сделать вывод о том, что коммутаторы представляют собой универсальные средства решения основных проблем сетей - от существенного увеличения производительности до обеспечения конфиденциальности трафика.

Характеристики производительности коммутаторов. Основными характеристиками коммутатора, определяющими его производительность, являются:

скорость фильтрации (filtering);

скорость маршрутизации (forwarding);

пропускная способность (throughput);

задержка передачи кадра.

Кроме того, существует несколько характеристик коммутатора, которые в наибольшей степени влияют на указанные характеристики производительности. К ним относятся:

размер буфера (буферов) кадров;

производительность внутренней шины;

производительность процессора или процессоров;

размер внутренней адресной таблицы.

Скорость фильтрации и скорость продвижения

Скорость фильтрации и маршрутизации (продвижения) кадров - это две основные характеристики производительности коммутатора. Эти характеристики являются интегральными показателями, они не зависят от того, каким образом технически реализован коммутатор.

Скорость фильтрации определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

прием кадра в свой буфер,

просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра,

уничтожение кадра, так как его порт назначения совпадает с портом-источником.

Скорость продвижения определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:

прием кадра в свой буфер,

просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра,

передача кадра в сеть через найденный по адресной таблице порт назначения.

Как скорость фильтрации, так и скорость продвижения измеряются обычно в кадрах в секунду. Если в характеристиках коммутатора не уточняется, для какого протокола и для какого размера кадра приведены значения скоростей фильтрации и продвижения, то по умолчанию считается, что эти показатели даются для протокола Ethernet.

Пропускная способность коммутатора измеряется количеством переданных в единицу времени через его порты пользовательских данных.

Задержка передачи кадра (пакета) измеряется как время, прошедшее с момента прихода первого байта кадра на входной порт коммутатора до момента появления этого байта на выходном порту коммутатора. Задержка складывается из времени, затрачиваемого на буферизацию байтов кадра, а также времени, затрачиваемого на обработку кадра коммутатором - просмотр адресной таблицы, принятие решения о фильтрации или продвижении и получения доступа к среде выходного порта.

Величина вносимой коммутатором задержки зависит от режима его работы. Если коммутация осуществляется "на лету", то задержки обычно невелики и составляют от 10 мкс до 40 мкс, а при полной буферизации кадров - от 50 мкс до 200 мкс (для кадров минимальной длины).

Оценка необходимой общей производительности коммутатора. В идеальном случае коммутатор, установленный в сети, передает кадры между узлами, подключенными к его портам, с той скоростью, с которой узлы генерируют эти кадры, не внося дополнительных задержек и не теряя ни одного кадра. В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Лучшим критерием по-прежнему остается практика, когда коммутатор ставится в реальную сеть и измеряются вносимые им задержки и количество потерянных кадров.

Сейчас среди коммутаторов в зависимости от выполняемых ими функций выделяют настраиваемые, неуправляемые и управляемые коммутаторы.

Настраиваемые коммутаторы - это коммутаторы, которые позволяют пользователю производить некоторые настройки, например конфигурирование VLAN. Могут быть и управляемыми и неуправляемыми.

Неуправляемые коммутаторы - коммутаторы, которые не поддерживают управление по протоколам сетевого управления как SNMP (рассматривается ниже). При этом неуправляемые коммутаторы могут быть настраиваемыми.

Управляемые коммутаторы поддерживают протоколы сетевого управления и могут управляться по сети с использованием специального программного обеспечения.

В последнее время появились модульные коммутаторы. Модульные коммутаторы представляют из себя следующую архитектуру: основанием служит шасси, куда вставляются необходимые модули, что позволяет на базе одного шасси строить достаточно гибкие системы.