6.4.Коммутаторы
Это многопортовое устройство, у которого каждый порт связан с отдельным сегментом сети. Внешне похожий на концентратор, коммутатор принимает входящий трафик через свои порты, но в отличие от концентратора, который передаёт исходящий трафик через множество портов, коммутатор передает трафик только через один порт, необходимый для достижения места назначения. Основная роль коммутаторов состоит в коммутации каналов, заключающейся в соединении на своих внутренних шинах входных и выходных цепей в зависимости от того, куда направляются данные. Иногда коммутация осуществляется с помощью буферов, без непосредственного электрического соединения.
Коммутатор обычно значительно более сложное и дорогое устройство, чем концентратор. Иногда для названия того и другого используется термин HUB, что в переводе с английского означает центр, основа, сердце. При использовании термина HUB часто непонятно, о чем идет речь, о коммутаторе или концентраторе. Путаница возникает также из-за того, что концентраторы иногда выполняют функции коммутации, а коммутаторы выполняют функции маршрутизации. Поэтому для понимания того, что есть что, надо меньше обращать внимания на название устройства, а больше на набор функций, которые оно выполняет. Коммутатор ЛВС (LAN Switch) позволяет конфигурировать сети неограниченного размера. Коммутаторы функционируют на канальном уровне, но могут поддерживать и любой протокол сетевого уровня и выполнять функции маршрутизации. Современный Switch является одновременно и маршрутизатором, и коммутатором. Преимущество коммутатора заключается в том, что он управляет сетевым трафиком. Когда концентратор производит широковещательную передачу всех кадров во все подсоединённые к нему сегменты, то каждый ПК должен остановиться и прослушать среду во избежание конфликтов. Коммутатор же передаёт трафик только одному сегменту, не активизируя остальные сегменты. Фактически, можно продолжить обмен данными с другими сегментами. Коммутация делает возможным резервирование более широкой полосы пропускания для приложений, требующих интенсивного трафика. С помощью коммутации каждый порт может иметь свой канал, допустим, на 10 Мбит/с, в то время как в концентраторе все порты одновременно используют один и тот ж канал на 10 Мбит/с (или на другой скорости).
Применение коммутаторов позволяет соединить вместе несколько сетей и воспользоваться преимуществами связи без помех, возникающих вследствие совместного использования полосы пропускания. В зависимости от местоположения коммутаторов в сети, их можно использовать для изолирования частей сети на уровне рабочих групп или магистрали. Поэтому различают коммутаторы рабочих групп и магистральные коммутаторы. Остановимся подробней на разновидностях и функциях коммутаторов. Далее будем рассматривать сетевое оборудование применительно к сети Ethernet, поскольку эта сеть в последние годы стала самой популярной и широко используемой, инфраструктура этой сети хорошо проработана.
Коммутаторы 2-го уровня. Уровень 2 (по семиуровневой модели OSI) соответствует кадрам Ethernet. Их передвижение происходит согласно MAC-адресам. Коммутаторы, работающие с адресами канального уровня, называют коммутаторами 2-го уровня (L2 - layer- 2 switch). Они могут производить весьма сложные операции. Например, ставить и убирать метки VLAN (см. ниже), распознавать приоритеты, устанавливать кадры в очереди, определять атаки, считать Ethernet-трафик, фильтровать по номерам портов и т. п.
Коммутаторы 3 уровня (L3 - layer-3 switch). Эти коммутаторы добавляют к обычным функциям маршрутизацию трафика между портами на сетевом уровне.
Популярность Internet и корпоративных сетей Intranet привела к значительному росту уровня сетевого трафика. За счет доступа пользователей к удаленным ресурсам и серверам потоки трафика становятся все менее локальными. Увеличение потока данных и делокализация трафика ведут к перегрузке маршрутизаторов. Для решения возникших задач большинство производителей сетевого оборудования решают задачу коммутации на сетевом уровне. Коммутация на сетевом уровне обеспечивает сочетание разумности маршрутизаторов и скорости коммутаторов.
Коммутаторы 4 уровня (L4 - layer-4 switch). Работают на четвёртом уровне сетевой модели. Дополнительно к функциям коммутаторов L3 могут выполнять функцию оптимального распределения сетевой нагрузки, имеют повышенную устойчивость к сбоям.
Важность коммутации уровня 4 в том, что она дает администраторам сети возможность автоматизировать коммутацию пакетов на основе приоритетов приложений. Эти устройства обычно используют уровень 4 стека TCP/IP (прикладной уровень) в дополнение к коммутации на уровне 2 и маршрутизации на уровне 3. Коммутаторы опираются на информацию уровня 4, такую как присваиваемые типам приложений стандартные номера портов Transport Control Protocol для передачи пакетов и установки их приоритетов, в зависимости от того, приложение какого типа их инициировало
Таким образом, рассматривая возможности коммутаторов разных уровней, можно сделать вывод о том, что коммутаторы представляют собой универсальные средства решения основных проблем сетей - от существенного увеличения производительности до обеспечения конфиденциальности трафика.
Характеристики производительности коммутаторов. Основными характеристиками коммутатора, определяющими его производительность, являются:
скорость фильтрации (filtering);
скорость маршрутизации (forwarding);
пропускная способность (throughput);
задержка передачи кадра.
Кроме того, существует несколько характеристик коммутатора, которые в наибольшей степени влияют на указанные характеристики производительности. К ним относятся:
размер буфера (буферов) кадров;
производительность внутренней шины;
производительность процессора или процессоров;
размер внутренней адресной таблицы.
Скорость фильтрации и скорость продвижения
Скорость фильтрации и маршрутизации (продвижения) кадров - это две основные характеристики производительности коммутатора. Эти характеристики являются интегральными показателями, они не зависят от того, каким образом технически реализован коммутатор.
Скорость фильтрации определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:
прием кадра в свой буфер,
просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра,
уничтожение кадра, так как его порт назначения совпадает с портом-источником.
Скорость продвижения определяет скорость, с которой коммутатор выполняет следующие этапы обработки кадров:
прием кадра в свой буфер,
просмотр адресной таблицы с целью нахождения порта для адреса назначения кадра,
передача кадра в сеть через найденный по адресной таблице порт назначения.
Как скорость фильтрации, так и скорость продвижения измеряются обычно в кадрах в секунду. Если в характеристиках коммутатора не уточняется, для какого протокола и для какого размера кадра приведены значения скоростей фильтрации и продвижения, то по умолчанию считается, что эти показатели даются для протокола Ethernet.
Пропускная способность коммутатора измеряется количеством переданных в единицу времени через его порты пользовательских данных.
Задержка передачи кадра (пакета) измеряется как время, прошедшее с момента прихода первого байта кадра на входной порт коммутатора до момента появления этого байта на выходном порту коммутатора. Задержка складывается из времени, затрачиваемого на буферизацию байтов кадра, а также времени, затрачиваемого на обработку кадра коммутатором - просмотр адресной таблицы, принятие решения о фильтрации или продвижении и получения доступа к среде выходного порта.
Величина вносимой коммутатором задержки зависит от режима его работы. Если коммутация осуществляется "на лету", то задержки обычно невелики и составляют от 10 мкс до 40 мкс, а при полной буферизации кадров - от 50 мкс до 200 мкс (для кадров минимальной длины).
Оценка необходимой общей производительности коммутатора. В идеальном случае коммутатор, установленный в сети, передает кадры между узлами, подключенными к его портам, с той скоростью, с которой узлы генерируют эти кадры, не внося дополнительных задержек и не теряя ни одного кадра. В реальной практике коммутатор всегда вносит некоторые задержки при передаче кадров, а также может некоторые кадры терять, то есть не доставлять их адресатам. Из-за различий во внутренней организации разных моделей коммутаторов трудно предвидеть, как тот или иной коммутатор будет передавать кадры какого-то конкретного образца трафика. Лучшим критерием по-прежнему остается практика, когда коммутатор ставится в реальную сеть и измеряются вносимые им задержки и количество потерянных кадров.
Сейчас среди коммутаторов в зависимости от выполняемых ими функций выделяют настраиваемые, неуправляемые и управляемые коммутаторы.
Настраиваемые коммутаторы - это коммутаторы, которые позволяют пользователю производить некоторые настройки, например конфигурирование VLAN. Могут быть и управляемыми и неуправляемыми.
Неуправляемые коммутаторы - коммутаторы, которые не поддерживают управление по протоколам сетевого управления как SNMP (рассматривается ниже). При этом неуправляемые коммутаторы могут быть настраиваемыми.
Управляемые коммутаторы поддерживают протоколы сетевого управления и могут управляться по сети с использованием специального программного обеспечения.
В последнее время появились модульные коммутаторы. Модульные коммутаторы представляют из себя следующую архитектуру: основанием служит шасси, куда вставляются необходимые модули, что позволяет на базе одного шасси строить достаточно гибкие системы.
- 1.Классификация, назначение вычислительных сетей
- 1.1.Понятие вычислительной сети. Классификация сетей.
- 1.2.Типы серверов
- 1.3.Назначение вычислительных сетей
- 2.Архитектура вычислительных сетей. Эталонная модель
- 2.1. Архитектура связей
- 2.2.Уровни модели iso/osi
- 2.3.Концепции адресации в сетях
- 2.4.Блоки данных, пакеты и сообщения
- 2.5. Понятие протоколов вычислительных сетей
- 2.6.Стеки протоколов
- 2.7.Сетезависимые протоколы и протоколы, ориентированные на приложения
- 3.Топология и методы доступа
- 3.1.Понятие топологии и метода доступа к передающей среде.
- 3.2.Сетевые топологии
- 4.Среда передачи даннных в вс
- 4.1.Классификация сред передачи данных
- 4.2.Кабельные каналы связи
- 4.3.Кабель витая пара
- 4.4.Волоконно-оптические кабели
- 4.5.Основные характеристики кабелей
- 5. Методы коммутации в вычислительных сетях
- 5.1.Понятие коммутации
- 5.2.Коммутация каналов
- 5.3.Коммутация пакетов
- 6.Аппаратное оьеспечение вычислительных сетей
- 6.1.Сетевое оборудование
- 6.2.Сетевые адаптеры
- 6.3.Концентраторы
- 6.4.Коммутаторы
- 6.5.Маршрутизаторы
- 6.6.Модемы
- 6.7. Организация виртуальных сетей
- 6.8.Сети vpn
- 6.9.Объединение сетей
- 7.Базовые технологии построения локальных сетей
- 7.1.Стандартизация технологий локальных сетей
- 7.4.Другие сетевые технологии
- 8. Адресация в ip-сетях
- 8.1. Типы адресов
- 8.2.Структура и классы ip-адресов
- 8.3.Бесклассовая интердоменная маршрутизация.
- 9. Принципы построения и функционирования internet
- 9.1.Общая характеристика сети Internet
- 9.2. Сервисы Internet.
- 9.3.Виды подключения к Internet
- 9.4. Доменная система имен
- 9.5.Универсальные указатели ресурсов
- 9.6.Схемы адресации ресурсов Internet
- 9.7.Сетевая модель Internet и стек протоколов tcp/ip
- 9.8.Уровень доступа к сети
- 9.9.Сетевой уровень модели Internet
- 9.10.Протоколы транспортного уровня Internet
- 9.11.Прикладной уровень Internet
- 10. Организация сетевого взаимодействия
- 10.1.Отображение физических адресов на ip-адреса: протоколы arp и rarp
- 10.2.Отображение символьных адресов на ip-адреса: служба dns
- 10.3.Служба динамической генерации ip – адресов.
- 10.4.Назначение и основные возможности proxy - серверов
- 10.5.Тестирование tcp/ip при помощи утилит Ipconfig, Ping и Tracert
- 11.Настройка сетей
- 11.1.Настройка подключения к локальной сети
- 11.2.Настройка подключения к Internet
- 11.3. Настройка параметров internet explorer
- 11.4.Настройка электронной почты.
- 12.Особенности организации сети на базе Windows 2000 (2003) Server
- 12.1.Введение в Windows 2000 (2003) сервер
- 12.2.Введение в концепцию Active Directory
- 12.3.Логическая структура Active Directory.
- 12.4.Физическая структура Active Directory
- 12.5. Организация Active Directory
- 12.6.Репликация
- 12.7.Доверительные отношения
- 12.8.Пространство имен dns
- 13.Беспроводные сети
- 13.1.Общие сведения
- 13.2.Технология Wi – Fi. Архитектура, компоненты сети и стандарты
- 13.3. Основные элементы сети Wi - Fi
- 14.Сетевая безопасность
- 14.1.Классификация сетевых угроз
- Черви и троянцы
- Компьютерные вирусы
- 14.2.Сетевые угрозы и некоторые уровни osi.
- 14.3.Антивирусы.
- 14.4.Технологии выявления и нейтрализации компьютерных вирусов.
- 14.5.Обновление и настройка системы
- Основные международные организации, занимающиеся стандартизацией объединенных сетей
- Глоссарий
- 10. Организация сетевого взаимодействия 112
- 11.Настройка сетей 133
- 12.Особенности организации сети на базе Windows 2000 (2003) Server 156
- 13.Беспроводные сети 174
- 14.Сетевая безопасность 183