Співвідношення між прямою та двоїстою злп.
Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.
Економічну інтерпретацію кожної з пари таких задач розглянемо на прикладі виробничої задачі.
Пряма задача :
max F = c1x1 + c2x2 + … + cnxn (3.1)
економічний двоїстий лінійний програмування
за умов: (3.2)
. (3.3)
Необхідно визначити, яку кількість продукції кожного j- го виду необхідно виготовляти в процесі виробництва, щоб максимізувати загальну виручку від реалізації продукції підприємства. Причому відомі: наявні обсяги ресурсів – ; норми витрат і- го виду ресурсу на виробництво одиниці j- го виду продукції –, а також – ціни реалізації одиниці j-ої продукції.
Розглянемо тепер цю саму задачу з іншого погляду. Допустимо, що за певних умов доцільно продавати деяку частину чи всі наявні ресурси. Необхідно визначити ціни ресурсів. Кожному ресурсу поставимо у відповідність його оцінку . Умовно вважатимемо, що – ціна одиниці і- го ресурсу.
На виготовлення одиниці j- го виду продукції витрачається згідно з моделлю (3.1) – (3.3) m видів ресурсів у кількості відповідно . Оскільки ціна одиниці і- го виду ресурсу дорівнює , то загальна вартість ресурсів, що витрачаються на виробництво одиниці j- го виду продукції, обчислюється у такий спосіб:
.
Продавати ресурси доцільно лише за умови, що виручка, отримана від продажу ресурсів, перевищує суму, яку можна було б отримати від реалізації продукції, виготовленої з тих самих обсягів ресурсів, тобто:
.
Зрозуміло, що покупці ресурсів прагнуть здійснити операцію якнайдешевше, отже, необхідно визначити мінімальні ціни одиниць кожного виду ресурсів, за яких їх продаж є доцільнішим, ніж виготовлення продукції. Загальну вартість ресурсів можна виразити формулою:
.
Отже, в результаті маємо двоїсту задачу :
(3.4)
за умов: (3.5)
(3.6)
Тобто необхідно визначити, які мінімальні ціни можна встановити для одиниці кожного і- го виду ресурсу , щоб продаж ресурсів був доцільнішим, ніж виробництво продукції.
Зауважимо, що справжній зміст величин – умовні ціни, що виражають рівень «цінності» відповідного ресурсу для даного виробництва. Англійський термін «shadowprices» у літературі перекладають як «оцінка» або «тіньова, неявна ціна». Академік Л.В. Канторович назвав їх об’єктивно обумовленими оцінками відповідного ресурсу.
Задача (3.4) – (3.6) є двоїстою або спряженою до задачі (3.1) – (3.3), яку називають прямою (основною, початковою). Поняття двоїстості є взаємним. По суті мова йде про одну і ту ж задачу, але з різних поглядів. Дійсно, не важко переконатися, що двоїста задача до (3.4) – (3.6) збігається з початковою. Тому кожну з них можна вважати прямою, а іншу – двоїстою. Симетричність двох таких задач очевидна. Як у прямій, так і у двоїстій задачі використовують один набір початкових даних: , ; . Крім того, вектор обмежень початкової задачі стає вектором коефіцієнтів цільової функції двоїстої задачі і навпаки, а рядки матриці А (матриці коефіцієнтів при змінних з обмежень прямої задачі) стають стовпцями матриці коефіцієнтів при змінних в обмеженнях двоїстої задачі. Кожному обмеженню початкової задачі відповідає змінна двоїстої і навпаки.
Початкова постановка задачі та математична модель може мати вигляд як (3.1) – (3.3), так і (3.4) – (3.6). Отже, як правило, кажуть про пару спряжених задач лінійного програмування.
- Теоретичні питання
- Загальна задача лінійного програмування (злп).
- Постановка задачі. Побудова математичної моделі. Форми представлення злп.
- Графічний метод розв’язання задачі лінійного програмування.
- Симплекс-метод розв’язання задачі лінійного програмування.
- Алгоритм симплекс-метода.
- Теорія двоїстості. Двоїста задачі лінійного програмування.
- Співвідношення між прямою та двоїстою злп.
- Транспортні моделі. Визначення транспортної моделі. Методи розв’язання транспортної задачі.
- Визначення початкового рішення транспортної задачі.
- Метод північно-західного кута.
- Метод мінімального елементу.
- Транспортні моделі. Визначення оптимального рішення.
- Сітьові моделі.
- Цілочислове програмування.