logo search

2.1.2. Ядра и операционные системы реального времени (осрв)

Все ОСРВ сегодня являются многозадачными системами. Задачи делят между собой ресурсы вычислительной системы, в том числе и процессорное время. 

Внутренняя архитектура ОСРВ

Четкой границы между ядром (KERNEL) и операционной системой нет. Различают их, как правило, по набору функциональных возможностей. Ядра предоставляют пользователю такие базовые функции, как планирование синхронизация задач, межзадачная коммуникация, управление памятью и т. д. Операционные системы в дополнение к этому имеют файловую систему, сетевую поддержку, интерфейс с оператором и другие средства высокого уровня. 

По своей внутренней архитектуре ОСРВ можно условно разделить на монолитные ОС, ОС на основе микроядра и объектно-ориентированные ОС. Графически различия в этих подходах иллюстрируются рис. 2.1 – 2.3. 

Рис. 2.1. ОСРВ с монолитной архитектурой

Рис. 2.2. ОСРВ на основе микроядра

Рис. 2.3. Объектно-ориентированная ОСРВ

Планирование и запуск задач (проблемы и решения)

Важной частью любой ОСРВ является планировщик задач, чья функция - определить, какая из задач должна выполняться в системе в каждый конкретный момент времени. К основным методам планирования обычно относят: циклический алгоритм (в стиле round robin), разделение времени с равнодоступностью (time sharing with fairness), кооперативную многозадачность. Наиболее часто используемый в ОСРВ принцип планирования - приоритетная многозадачность с вытеснением. Основная идея состоит в том, что высокоприоритетная задача, как только для нее появляется работа, немедленно прерывает (вытесняет) низкоприоритетную. Однако диапазон систем реального времени весьма широк, начиная от полностью статических систем, где все задачи и их приоритеты заранее определены, до динамических систем, где набор выполняемых задач, их приоритеты и даже алгоритмы планирования могут меняться в процессе функционирования. Существуют, например, системы, где каждая отдельная задача может участвовать в любом из трех алгоритмов планирования или их комбинации (вытеснение, разделение времени, кооперативность). Кроме того, приоритеты тоже можно назначать по-разному. В общем случае алгоритмы планирования должны соответствовать критериям оптимальности функционирования системы. Однако, если для систем жесткого реального времени такой критерий очевиден «ВСЕГДА и ВСЕ делать вовремя», то для систем мягкого реального времени это может быть, например, минимальное максимальное запаздывание или средневзвешенная своевременность завершения операций. В зависимости от критериев оптимальности могут применяться алгоритмы планирования задач, отличные от рассмотренных. Например, может оказаться, что планировщик должен анализировать момент выдачи критичных по времени управляющих воздействий и запускать на выполнение ту задачу, которая отвечает за ближайшее из них (алгоритм earliest deadline first, EDF). 

Хотя каждая задача в системе, как правило, выполняет какую-либо отдельную функцию, часто возникает необходимость в согласовании (синхронизации) действий, выполняемых различными задачами. Такая синхронизация необходима, в основном в следующих случаях: 

Функции, выполняемые различными задачами, связаны друг с другом. Например, если одна задача подготавливает исходные данные для другой, то последняя не выполняется до тех пор, пока не получит от первой задачи соответствующего сообщения. Одна из вариаций в этом случае - это когда задача при определенных условиях порождает одну или несколько новых задач. 

Необходимо упорядочить доступ нескольких задач к разделяемому ресурсу. 

Необходима синхронизация задачи с внешними событиями. Как правило, для этого используется механизм прерываний. 

Необходима синхронизация задачи по времени. Диапазон различных вариантов в этом случае достаточно широк, от привязки момента выдачи какого-либо воздействия к точному астрономическому времени до простой задержки выполнения задачи на определенный интервал времени. Для решения этих вопросов в конечном счете используются специальные аппаратные средства, называемые таймером. 

Связные задачи

Взаимное согласование задач с помощью сообщений является одним из важнейших принципов операционных систем реального времени. Здесь можно встретить такие понятия, как сообщение (message), почтовый ящик (mail box), сигнал (signal), событие (event), прокси (proxy) и т.п. Один и тот же термин для разных ОСРВ может обозначать разные вещи. В дальнейшем будем называть сообщениями любой механизм явной передачи информации от одной задачи к другой (такие объекты, как семафоры, можно отнести к механизму неявной передачи сообщений). Объем информации, передаваемой в сообщении, может меняться от одного бита до всей свободной емкости памяти системы. Во многих ОСРВ компоненты операционной системы, также как и пользовательские задачи, способны принимать и передавать сообщения. Сообщения могут быть асинхронными и синхронными. В первом случае доставка сообщений задаче производится после того, как она в плановом порядке получит управление, а во втором случае циркуляция сообщений оказывает непосредственное влияние на планирование задач. Например, задача, пославшая какое-либо сообщение, немедленно блокируется, если для продолжения работы ей необходимо дождаться ответа, или если низкоприоритетная задача шлет высокоприоритетной задаче сообщение, которого последняя ожидает, то высокоприоритетная задача, если конечно, используется приоритетная многозадачность с вытеснением, немедленно получит управление. Иногда сообщения передаются через буфер определенного размера (почтовый ящик). При этом, как правило, новое сообщение затирает старое, даже если последнее не было обработано. 

Однако наиболее часто используется принцип, когда каждая задача имеет свою очередь сообщений, в конец которой ставится всякое вновь полученное сообщение. Стандартный принцип обработки очереди сообщений по принципу «первым вошел, первым вышел» (FIFO) не всегда оптимально соответствует поставленной задаче. В некоторых ОСРВ предусматривается такая возможность, когда сообщение от высокоприоритетной задачи обрабатывается в первую очередь (в этом случае говорят, что сообщение наследует приоритет пославшей его задачи). 

Иногда полезным оказывается непосредственное управление приоритетом сообщений. Представим, что задача послала серверу (драйверу) принтера несколько сообщений, содержащих данные для печати. Если теперь задача хочет отменить всю печать, ей надо послать соответствующее сообщение с более высоким приоритетом, чтобы оно встало в очередь впереди всех посланных ранее заданий на печать. 

Сообщение может содержать как сами данные, предназначенные для передачи, так и указатель на такие данные. В последнем случае обмен может производиться с помощью разделяемых областей памяти, разделяемых файлов и т.п. 

Общие ресурсы

Ресурс - это общий термин, описывающий физическое устройство или область памяти, которые могут одновременно использоваться только одной задачей. Представим, например, что несколько задач пытаются одновременно выводить данные на принтер. На распечатке результата мы увидим страшную мешанину. Иногда может возникнуть ситуация, когда одна задача не вовремя прерывает другую, от которой зависит правильность выполнения исходной задачи (например, вытесняемая задача собирает информацию, которую использует вытесняющая задача). В результате может возникнуть серьезная ошибка. Упомянутые проблемы обусловлены времязависимыми ошибками (time dependent error), или гонками и характерны для многозадачных ОС, применяющих алгоритмы планирования с вытеснением (кстати, системы с разделением времени также относятся к категории вытесняющих). Приведенный пример показывает, что ошибки, обусловленные гонками, а) характерны для работы с любыми ресурсами, доступ к которым имеют несколько задач, и б) происходят только в результате совпадения определенных условий, а потому с трудом обнаруживаются на этапе отладки. 

Вот возможные пути решения этой проблемы. 

Не использовать алгоритм планирования задач с вытеснением. Это решение, правда, не всегда приемлемо. 

Использовать специальный сервер ресурса, то есть задачу, ответственную за упорядочивание доступа к ресурсу. В этом случае запрос на изменение значения глобальных данных посылается этому серверу в виде сообщения. Аналогичный подход применим и для физических устройств. Так, например, задача может послать данные на печать в виде сообщения, направленного к серверу принтера. 

Запретить прерывания на время доступа к разделяемым данным. Кардинальное решение, которое, впрочем, не приветствуется в системах реального времени. 

Использовать для упорядочивания доступа к глобальным данным семафоры. Наиболее часто применяемое решение, которое, впрочем, может привести в некоторых случаях к инверсии приоритетов. Семафор - это как раз то средство, которое часто используется для синхронизации доступа к ресурсам. В простейшем случае семафор представляет собой байтовую переменную, принимающую значение 0 или 1. Задача, перед тем как использовать ресурс, захватывает семафор, после чего остальные задачи, желающие использовать тот же ресурс, должны ждать пока семафор (ресурс) освободится. Существуют так называемые счетные семафоры, где семафор представляет собой счетчик. Предположим, что у нас имеется N одинаковых ресурсов (например, принтеров). Используя семафор с инициализационным значением N, можно произвести синхронизацию доступа множества задач к группе из N ресурсов. 

Критическими секциями называются участки кода программ, где происходит обращение к разделяемым ресурсам. Так как процессы обычно не имеют доступа к данным друг друга, а ресурсы физических устройств, как правило, управляются специальными задачами-серверами (драйверами), наиболее типична ситуация, когда гонки за доступ к глобальным переменным устраивают различные потоки, исполняемые в рамках одного программного модуля. Для того, чтобы гарантировать, что критическая секция кода исполняется в каждый момент времени только одним потоком, используют механизм взаимоисключающего доступа, или попросту мутексов (Mutual Exclusion Locks, Mutex). Практически мутекс представляет собой разновидность семафора, который сигнализирует другим потокам, что критическая секция кода кем-то уже выполняется. 

Синхронизация с внешними событиями

Известно, что применение аппарата прерываний является более эффективным методом взаимодействия с внешним миром, чем метод опроса. Разработчики систем реального времени стараются использовать этот факт в полной мере. При этом можно проследить следующие тенденции: 

1. Попытка обеспечить максимально быструю и детерминированную реакцию системы на внешнее событие. 

2. Стремление добиться минимально возможных периодов времени, когда в системе запрещены прерывания. 

3. Подпрограммы обработки прерываний выполняют минимальный объем функций за максимально короткое время. Это обусловлено несколькими причинами. Во-первых, не все ОСРВ обеспечивают возможность «вытеснения» во время обработки подпрограмм прерывания. Во-вторых, приоритеты аппаратных прерываний не всегда соответствуют приоритетам задач, с которыми они связаны. В-третьих, задержки с обработкой прерываний могут привести к потере данных. 

Как правило, закончив элементарно необходимые действия, подпрограмма обработки прерываний генерирует в той или иной форме сообщение для задачи, с которой это прерывание связано, и немедленно возвращает управление. Если это сообщение привело задачу в разряд готовых к исполнению, планировщик в зависимости от используемого алгоритма и приоритета задачи принимает решение о том, необходимо или нет немедленно передать управление получившей сообщение задаче. Разумеется, это всего лишь один из возможных сценариев, так как каждая ОСРВ имеет свои особенности при обработке прерываний. Кроме того, свою специфику может накладывать используемая аппаратная платформа. 

Синхронизация по времени

Как правило, в ОСРВ задается эталонный интервал (квант) времени, который иногда называют тиком (Tick) и который используется в качестве базовой единицы измерения времени. Размерность этой единицы для разных ОСРВ может быть разной, как, впрочем, разными могут быть набор функций и механизмы взаимодействия с таймером. Функции по работе с таймером используют для приостановки выполнения задачи на какое-то время, для запуска задачи в определенное время, для относительной синхронизации нескольких задач по времени и т.п. Множество задач одновременно могут запросить сервис таймера, поэтому если для каждого такого запроса используется элемент в таблице временных интервалов, то накладные расходы системы по обработке прерываний от аппаратного таймера растут пропорционально размерности этой таблицы и могут стать недопустимыми. Для решения этой проблемы можно вместо таблицы использовать связный список и алгоритм так называемого дифференциального таймера, когда во время каждого тика уменьшается только один счетчик интервала времени.