Введение
Тема бакалаврской работы является "Простая замкнутая ломаная кривая" (ПЗЛ).
Актуальность : выбранной темы заключается в том, что теория ПЗЛ имеет практическое применение например: прокладывание газопровода, железнодорожных путей и т.д., но теория ПЗЛ не дает ответа как и сколькими способами это возможно сделать. В теории ПЗЛ дано лишь определение ПЗЛ и ее компонентов без выделения, каких либо свойств. А так решение проблемы выбранной темы является, частным случаем решения задачи Коммивояжера её ещё называют транспортной задачей.
Объект исследования: Планиметрия.
Предмет исследования: Простая замкнутая ломаная на плоскости.
Цели: Изучит понятие ПЗЛ, выделить его свойства и составить алгоритм построения.
Задачи:
1) Составить рекурсивный алгоритм позволяющий построить все возможные ПЗЛ через n произвольных точек плоскости (замечание эти точки должны быть вершинами ПЗЛ, и других вершин нет). Реализовать его в среде Turbo Pascal.
2) Дать верхнюю оценку количества способов построения ПЗЛ через n произвольных точек плоскости.
3) Составить не рекурсивный алгоритм и реализовать его на языке Turbo Pascal, позволяющий строить ПЗЛ для большого количества произвольных точек
Гипотезы:
1. ПЗЛ можно построить всегда, кроме случая когда все точки лежат на одной прямой.
2. Пусть через n точек проходят S прямых имеющих не менее 4-х данных точек, тогда через эти n точек можно провести не более чем
различных ПЗЛ, где k i -количество точек принадлежащих i-ой прямой, i=1,2…S
- Введение
- Глава 1
- §1. Понятие ломаной
- §2. Прямая на плоскости.
- Глава 2
- Введение: Перечень основных процедур и функций, используемых в программах
- §1. Function Peres, Блок Схема
- п.2 Function Peres, на языке Turbo Pascal
- §2. Рекурсивный способ построения простой замкнутой ломаной
- §3. Верхняя оценка количества способов построения ПЗЛ
- §4. Построения простой замкнутой ломаной методом "Треугольника"
- п.1 Идея метода
- п.2 Реализация на языке Паскаль
- Список литературы