2.3.6.1. Мониторы
К средствам визуального отображения относятся мониторы.
Монитор работает под управлением специального аппаратного устройства – видеоадаптера, который преобразует информацию, предназначенную для вывода на экран, из внутреннего машинного представления в представление монитора. Видеокарта установлена в слот расширения системной платы в системном блоке, и с помощью нее монитор подключается к компьютеру.
Дисплей и адаптер очень тесно связаны между собой и совместно определяют качество изображения – разрешение, количество воспроизводимых цветов, скорость регенерации (число кадров в единицу времени).
Отображение информации на экране монитора возможно в одним из двух режимов: символьном или графическом. В любом режиме изображение на экране составляется из отдельных точек, каждая из которых имеет свой цвет или яркость. В графическом режиме, который в основном используется в современных программных продуктах, управление цветом или яркостью осуществляется для каждой точки экрана в отдельности. В текстовом режиме управление цветом или яркостью осуществляется сразу для группы точек, образующих прямоугольную матрицу определенного размера. Для этой группы задается цвет фона, то есть цвет точек, не участвующих в формировании символа, цвет символа и код символа. Формирование символа осуществляется под управлением специального электронного устройства – знакогенератора, представляющего для каждого символа кодовой таблицы набор байтов, определяющих местоположение в матрице точек с цветом символа и цветом фона. Изменение таблицы знакогенератора позволяет менять шрифт и создавать альтернативные таблицы кодировок символов.
В обязанности современной видеокарты входит быстрая и качественная обработка двумерной графики и поддержка (возможность вывода на экран качественно прорисованного) объемного, трехмерного изображения (3D, 3-Dimensions). Кроме того, у многих видеокарт есть и дополнительные функции – прием изображения внешнего источника – видеокамеры, видео-магнитофона или телевизионной антенны (эти операции выполняют, соответственно, видеовход и TV-тюнер), вывод изображения на внешние устройства – телевизор или видеомагнитофон (этим занимается видеовыход). Видеокарта оснащена достаточно мощным специализированным графическим процессором и собственной оперативной памятью (видеопамятью), объем которой постепенно догоняет стандартный объем оперативной памяти самого компьютера.
Бурное развитие графического пользовательского интерфейса операционных систем, прикладных и игровых программ явилось стимулом к появлению нового поколения видеоадаптеров, которые принято называть «графическими ускорителями». Это означает, что многие графические функции выполняются в самом видеоадаптере на аппаратном уровне, благодаря чему высвобождаются ресурсы процессора для выполнения других задач.
Основные параметры видеокарт.
1. Разрешающая способность – определенное количество точек графического изображения на единицу площади. Чем больше этих точек, тем менее зернистой и более качественной будет картинка. Разрешающую способность описывают две величины — количество точек по вертикали и по горизонтали: 640480, 800600, 1024768, 1152864, 12801024, 16001200, 17921344.
2. Цветовой режим – количество цветов. Любая современная видеокарта обеспечит количество цветов от 16 до нескольких десятков миллионов, достигая границы чувствительности человеческого глаза. Самый «грубый» режим – 16 цветов. LowColor – режим 256 цветов. High Color – режим «высококачественного цвета» (65 тыс. цветов). True Color – режим «реального цвета» (16 млн. цветов). Два последних режима являются «рабочими» для Windows, они же чаще всего используются в играх.
Эти два параметра вместе называются видеорежимом (режим 80060065K – разрешение 800600 при 65 тыс. цветов).
3. Максимальная частота развертки (Refresh Rate) – частота обновления кадров. Чем выше частота развертки – тем меньше будет «рябить» экран монитора. Для комфортной работы необходимо, чтобы частота вертикальной развертки составляла не менее 80 Гц, т.е. чтобы изображе-ние на экране обновлялось с частотой не менее 80 раз в секунду.
Управление видеокартой в графическом режиме, в том числе включение того или иного графического режима, осуществляется с помощью специальной программы, называемой графическим драйвером. Стандартные драйверы имеют расширение bgi, например svga256.bgi.
В настоящее время наиболее распространены цветные мониторы с видеоадаптером SVGA (Super Video Graphic Array – видеографическая матрица). Монохромные мониторы в современных компьютерах не используются. Характеристиками монитора являются:
-
размер зерна люминофора (вещества, светящегося под воздействием пучка электронов);
-
размер экрана по диагонали.
Размер зерна – это минимальный размер пикселя, который может быть получен в данном мониторе. Минимальный элемент изображения на экране (точка) называется пикселем – от английского «picture element». Нельзя смешивать понятия «пиксель» и «зерно». Размер зерна изменить нельзя, а размер пикселя зависит от режима видеоадаптера. Для адаптеров с высоким разрешением нет смысла использовать монитор с крупным размером зерна. Приемлемым сегодня считается зерно 0,28 мм, качественные мониторы имеют зерно 0,25–0,24 мм, профессиональные – 0,22 мм. Величина зерна заметно сказывается на контрастности изображения. Поэтому для графических работ следует выбирать мониторы с зерном не более 0,25 мм.
Мониторы имеют различный размер экрана. Размер диагонали экрана измеряется в дюймах (1 дюйм = 2,54 см) и составляет 15,17, 19, 21 и более дюймов.
В настоящее время используются два вида мониторов: мониторы на электронно-лучевой трубке (ЭЛТ) и жидкокристаллические мониторы.
Параметры монитора ЭЛТ определяются характеристиками электронно-лучевой трубки и качеством элементов, управляющих видеотрактом.
Конструкция ЭЛТ совпадает с телевизионным кинескопом (рис. 2.11).
Перечислим основные детали, из которых состоит ЭЛТ: катод, анод, экран, колба модулятор, горизонтальные отклоняющие пластины, вертикальные отклоняющие пластины. Катод, анод и модулятор образуют электронный прожектор, который иногда называют электронной пушкой. Горизонтальные и вертикальные отклоняющие пластины образуют отклоняющую систему.
Анод
Отклоняющая система
Фокусирующая
система
Рис. 2.11. Принципиальное устройство электронно-лучевой трубки монитора
В ЭЛТ используется поток электронов, сфокусированных в узкий пучок, управляемый по интенсивности и по положению в пространстве. Электронный пучок испускается электронным прожектором (точнее, катодом), а изменение положения пучка на кране производится отклоняющей системой.
Перемещение электронного луча по экрану ЭЛТ в соответствии с определенным законом называется разверткой, а рисунок, прочерченный следом пучка на экране, – растром. Развертка осуществляется подачей на отклоняющую систему ЭЛТ периодически изменяющихся напряжений. В ходе развертки электронный пучок последовательно обегает по строчкам поверхность экрана ЭЛТ. В процессе сканирования поток электронов движется по зигзагообразной траектории от левого верхнего угла экрана к нижнему правому углу.
Экран покрыт люминофором, поэтому в местах падения электронного пучка появляется свечение, яркость которого пропорциональна интенсивности пучка. Интенсивность потока электронов изменяется в соответствии с сигналами, подаваемыми на управляющий электрод – модулятор. Именно эти сигналы формируют необходимое изображение на экране дисплея. С помощью отклоняющей системы модулированный пучок электронов развертывается в растр, высвечивая на экране строку за строкой. Изображение воспроизводится кадр за кадром. Благодаря инерционности зрения человек видит на экране слитное, динамическое, изображение.
В цветных мониторах для формирования изображения применяют отдельные пушки для каждого из основных цветов (Red – красный, Green – зеленый, Blue – синий), а слой люминофора составляют из близко расположенных группами по три (также в сочетании Red, Green, Blue – RGB) точек цветного люминофора.
Мониторы на ЭЛТ (рис. 2.12) являются источником высокого статического напряжения, элек-тромагнитного излучения и мягкого рентгеновского излучения, которые оказывают неблагоприятное воздействие на пользователя. Наиболее интенсивны электромагнитные и другие излучения в области задней стенки корпуса монитора.
Экраны на плоских панелях могут быть основаны на нескольких технологиях:
-
жидких кристаллах (LCD);
-
плазменных (PDP);
-
светодиодных элементах (LED);
-
электронной эмиссии (FED)
-
и других.
Рис. 2.12. Внешний вид ЭЛТ-монитора
Жидкокристаллические мониторы (LCD – Liquid Crystal Display) имеют панели, ячейки (пикселы) которых содержат жидкие вещества, обладающие некоторыми свойствами, присущими кристаллам (рис. 2.13). Молекулы жидких кристаллов под воздействием электрического поля могут изменять свою ориентацию и вследствие этого изменять свойства светового луча, проходящего сквозь них.
Рис. 2.13. Внешний вид ЖК-монитора
ЖК-панель имеет несколько слоев, среди которых ключевую роль играют две стеклянные подложки и находящийся между ними слой жидких кристаллов. На подложках проделаны параллельные бороздки, определяющие ориентацию жидких кристаллов. Бороздки двух подложек перпендикулярны между собой. Молекулы жидких кристаллов в отсутствие напряжения под воздействием источника проходящего или падающего света поворачивают плоскость поляризации на угол 90°, что обеспечивает совпадение с ориентацией бороздок. При появлении электрического поля ЖК-молекулы выстраиваются вдоль поля, и угол поворота плоскости поляризации света становится отличным от 90°. Поворот плоскости поляризации светового луча незаметен для глаза, поэтому на панели устанавливают несколько поляризационных фильтров. Они пропускают только ту компоненту светового потока, у которой ось поляризации соответствует заданной. В отсутствие напряжения на сегменте углы поляризации света после прохождения ЖК-ячеек и второй подложки совпадают, и потому пиксел выглядит прозрачным.
Важнейшим параметром плоскопанельных дисплеев является стандартное (Native) разрешение. Оно соответствует числу пикселов по горизонтали и вертикали. Именно в стандартном разрешении ЖК-монитор воспроизводит изображение наиболее качественно. Разрешение определяется размером ячеек и диагональю панели. В настоящее время производятся панели с ячейками размером 0,24–0,3 мм.
Яркость и контрастность определяют комфортность работы с ЖК-монитором. Цветовой охват современных ЖК-панелей достигает 16,7 млн цветов. Таким образом, к преимуществам ЖК-мониторов можно отнести небольшое питающее напряжение, малую глубину панели, действительно плоское изображение (без геометрических искажений), высокие значения яркости, низкое энергопотребление, отсутствие электромагнитных излучений. Существенных недостатков четыре: высокая цена (которая динамично снижается), искажение цветов, единственный режим разрешения, обеспечивающий хорошее качество, малые углы комфортного обзора.
Мониторы, основанные на плазменных технологиях, светодиодных элементах и электронной эмиссии, пока используются редко.
- 2. Общий состав персональных эвм и вычислительных систеМ
- 2.1. Состав персонального компьютера
- 2.2. Архитектура компьютера
- 2.2.1. Классическая архитектура эвм и принципы фон Неймана
- 2.2.2. Совершенствование и развитие внутренней структуры эвм
- 2.2.3. Основной цикл работы компьютера
- 2.3. Функциональные компоненты компьютера
- 2.3.1. Микропроцессор
- 2.3.2. Шины
- 2.3.3. Память
- 2.3.4. Внешние запоминающие устройства
- 2.3.5. Порты
- 2.3.6. Устройства вывода
- 2.3.6.1. Мониторы
- 2.3.6.2. Принтеры
- 2.3.6.3. Другие устройства вывода
- 2.3.7. Устройства ввода
- 2.4. Основные типы компьютеров. Конфигурации персональных компьютеров