1.3.2 Аналитическое описание булевых функций
На примерах описания ФАЛ, приведенных в таблице 3, видно, что конституента 1 может быть описана в виде элементарной конъюнкции переменных:
; (15)
где: ,если соответствующий разряд кода равен 0; ,если соответствующий разряд кода равен 1.
Конституента 0 может быть описана в виде элементарной дизъюнкции переменных:
; (16)
где: ,если соответствующий разряд кода равен 1; ,если соответствующий разряд кода равен 0.
Формулы (15) и (16) представляют аналитическую форму записи конституент, как функций алгебры логики.
ФАЛ общего вида может быть аналитически записана:
- в совершенной дизъюнктивной нормальной форме (СДНФ)
; (17)
где Fp , Fk ,..., Fz - конституенты 1. В контексте аналитической записи ФАЛ в СДНФ все конъюнктивные термы имеют максимальный ранг и называются минтермами ранга n.
- в совершенной конъюнктивной нормальной форме (СКНФ)
Ф = Фd & Фt & ... Фy; (18)
где Фd , Фt ,..., Фy - конституенты 0. В контексте аналитической записи ФАЛ в СКНФ все дизъюнктивные термы имеют максимальный ранг и называются макстермами ранга n.
ФАЛ общего вида, приведенная в таблице 3, записывается в СДНФ как:
В СКНФ эта же ФАЛ записывается как:
Для практического применения обычно используется СДНФ и мы в дальнейшем будем пользоваться только этой формой представления ФАЛ.
- Глава 1 5
- Глава 2 40
- Глава 3 88
- Введение
- Глава 1 логические основы цифровых автоматов
- 1.1 Основные понятия алгебры логики
- 1.2 Базис и, или, не. Свойства элементарных функций алгебры логики
- 1.3 Способы описания булевых функций
- 1.3.1 Табличное описание булевых функций
- 1.3.2 Аналитическое описание булевых функций
- 1.3.3 Числовая форма представления булевых функций
- 1.3.4 Графическая форма представления булевых функций
- 1.3.5 Геометрическое представление булевых функций
- 1.4 Минимизация функций алгебры логики
- 1.4.1 Минимизация с помощью минимизирующих карт
- 1.4.2 Минимизация функций алгебры логики по методу Квайна
- 1.4.3 Минимизация функций алгебры логики
- 1.5 Элементная база для построения комбинационных схем
- 1.5.1 Логические элементы и, или, не
- 1.5.1.1 Логические элементы и и и-не (Позитивная логика)
- 1.5.1.2 Логические элементы или, или-не (Позитивная логика)
- 1.5.2 Примеры технической реализации булевых функций
- 1.5.2.1 Функция исключающее-или (Сложение по модулю 2)
- 1.5.2.2 Минимизированная функция алгебры логики ф.(27) (Дешифратор второго рода)
- 1.5.3 Программируемые логические матрицы (плм)
- 1.5.3.1 Примеры плм
- 1.5.3.2 Процедуры программирования плм
- Глава 2 синтез цифровых автоматов
- 2.1 Определение абстрактного цифрового автомата
- 2.2 Методы описания цифровых автоматов
- 2.3 Синхронные и асинхронные цифровые автоматы
- 2.4 Связь между математическими моделями цифровых автоматов Мили и Мура
- 2.5 Минимизация абстрактных цифровых автоматов
- 2.5.1 Минимизация абстрактного автомата Мили
- 2.5.2 Минимизация абстрактного автомата Мура
- 2.6 Структурный синтез автоматов
- 2.6.1 Элементарные автоматы памяти
- 2.6.2 Синхронизация в цифровых автоматах
- 2.7 Структурный синтез цифровых автоматов по таблицам
- 2.8 Структурный синтез цифрового автомата по графу
- Глава 3 микропрограммные автоматы
- 3.1 Декомпозиция устройств обработки цифровой информации
- 3.2 Управляющие автоматы
- 3.3 Принцип действия управляющего автомата с хранимой в памяти логикой и микропрограммное управление
- 3.3.1 Горизонтальное микропрограммирование
- 3.3.2 Вертикальное микропрограммирование
- 3.3.3 Смешанное микропрограммирование
- 3.3.3.1 Вертикально - горизонтальное микропрограммирование
- 3.3.3.2 Горизонтально - вертикальное микропрограммирование
- 3.4 Управляющие автоматы с «жёсткой логикой»
- 3.5 Граф - схемы микропрограммных автоматов
- 3.6 Синтез микропрограммных автоматов по граф - схеме алгоритма
- 3.6.1 Синтез микропрограммного автомата Мили
- 3.6.2 Синтез микропрограммного автомата Мура
- 3.6.3 Минимизация микропрограммных автоматов
- Заключение