Многотабличная замена. Буквенная ключевая последовательность.
Многоалфавитный шифр более стойкий. Например, таблица Вижинера. Это квадратная матрица N*N, гдеN— количество символов алфавита.
Первая строка матрицы — исходный алфавит. Следующие — кольцевой сдвиг алфавита на одну букву. Для шифрования задаётся слово из Kбукв (буквенный ключ). Из таблицы Вижинера выписывается рабочая подтаблица (K+1)*N. Первая строка — исходный алфавит. Следующие строки — алфавиты, начинающиеся с очередных букв ключа. Процедура шифрования:
под каждой буквой шифруемого текста записываются буквы ключа, повторяя его необходимое число раз;
Замена букв производится по подматрице и затем шифротекст разбивается на группы, например по 5 знаков.
Расшифрование шифротекста происходит в обратной последовательности. Ключ следует периодически или для каждого файла менять.
Заменив буквы числами, получим цифровую шифрограмму. Статистические характеристики букв шифротекста уже иные, чем у исходного текста, т.к. в разных местах текста данная буква будет шифроваться разными буквами.
Проблемы ключа.
При коротком ключе шифрование не надёжно (злоумышленнику для раскрытия по крайней мере надо перехватить количество знаков в шифровке равное 20 длинам ключа). Длинный же ключ запомнить трудно (если он ещё и не имеет лингвосмысла), а запись его на бумаге может быть похищена. Ключ может вводиться пользователем с терминала или храниться в ЗУ в зашифрованном виде.
Одноалфавитные и многоалфавитные подстановки можно представить общей формулой, рассматривая её как задачу современной алгебры, т.к. между знаками алфавита и набором положительных целых чисел 0, 1, 2, …,устанавливается произвольное однозначное соответствие, то при сложении и вычитании по модулюэти положительные числа формируют алгебраическое кольцо и однозначное обратное преобразование.
шифрование: (1)
расшифрование:
Если , то имеем одноалфавитную подстановку. Для неё общую формулу можно расширить:
, при (2)
где: — числовой код букв шифра— числовой код букв исходного текста— размер алфавита— десятичный коэффициент— коэффициент сдвига
При ,,получаем код Цезаря с алфавитом, например:
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z в(пробел)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Отметим, что две одноалфавитные замены подряд не увеличивают стойкости шифра, т.к. эквивалентны одной (суммарной) замене. Например если первая замена была с (формула 2), а вторая с, то получим результирующую одну замену с.
- 4 Курс, 8 семестр
- Введение
- Темы спецкурса
- Информационная безопасность (это борьба)
- Защита информации (это засекречивание и сокрытие ее)
- Общие вопросы информационной безопасности и защиты информации, как для пк, так и для вычислительных и управляющих систем и сетей
- Угрозы и необходимость сохранности информации
- Слабые места ивс, привлекательные для злоумышленников
- Развитие идей и концепций защиты информации
- Каналы утечки информации
- Способы и средства защиты информации
- Элементы криптологии на исторических примерах
- Терминология
- Периоды развития криптологии.
- Примеры шифрования письма от древности до наших дней
- Практические шифры, применявшиеся от древних времен до падения Рима.
- Шифры возрождения криптографии после темных веков варварства, последовавших после падения Рима. (Конец средневековья 1390 г. До начала нового времени хiх век)
- Новое время (xiXвек — …) предъявило к шифрам требования: легкость массового использования и усиление устойчивости к взлому.
- Шифрование письма в России.
- Шифры подполья России
- Модулярная арифметика (mod-арифметика)
- Свойства целочисленных операций с modN
- Основные свойства
- Виды датчиков псп
- Программные датчики. Общая модель
- Генерация дискретных случайных величин (событий) с помощью датчика псп.
- Проблемы генерирования криптографически стойкой псевдослучайной последовательности (псп) чисел.
- Как получить большую длину псп чисел
- Псп нулей и единиц (гамма).
- Реализация генератора гаммы на регистрах сдвига
- Тестирование гаммы
- Классическая криптография
- Криптографическая система с одним ключом (общим для шифрования и расшифрования)
- Шифрование заменой (подстановками)
- Многотабличная замена. Буквенная ключевая последовательность.
- Числовая ключевая последовательность
- Шифрование с использованием алгебры матриц (частный случай перестановок).
- Блочная подстановка (замена) — блочный шифр.
- Свойства s-преобразований.
- Метод перестановок (шифрование перестановками)
- Табличный вариант
- Расшифровка
- Усложнение табличного варианта.
- Перестановка по маршрутам Гамильтона.
- Шифры перестановки
- Шифры взбивания
- Идеи комбинационного шифрования.
- Гаммирование двоичного текста.
- Слабые места шифра замены с помощь операции xor.
- Потоковое (поточное) шифрование.
- Синхронное потоковое шифрование
- Классификация
- Самосинхронизирующееся поточное шифрование
- Основные свойства -шифра.
- Общие требования к шифрам.
- Стеганография
- Введение
- Примеры методов стеганографии без использования специальных технических средств.
- Примеры стеганографии с использованием технических средств.
- Принципы компьютерной стеганографии.
- Недостатки и проблемы
- Методы компьютерной стеганографии
- Общие принципы
- Группа методов использования избыточности аудио- и визуальной информации.
- Криптофония – защита речевых сообщений
- Методы обеспечения скрытности переговоров по незащищенным каналам связи
- Структурная схема комбинированного скремблирования
- Вокодерная схема закрытия
- Пример практической реализации простого цифрового скремблирования/дескремблирования сигнала речи
- Логическая операция xor как шифрование (дешифрование) потока бит.
- Скремблер/дескремблер.
- Моделирование работы системы скремблер/дескремблер.
- Принципиальная схема опытного макета скремблера/дескремблера.
- Система скремблер/дескремблер со сменным секретным ключом.
- Выбор ключа.
- Список литературы.