2.3 Матрица смежности
Матрица смежности — один из способов представления графа в виде матрицы. Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n) — это квадратная матрица A размера n, в которой значение элемента aij равно числу рёбер из i-й вершины графа в j-ю вершину. Иногда, особенно в случае неориентированного графа, петля (ребро из i-й вершины в саму себя) считается за два ребра, то есть значение диагонального элемента aii в этом случае равно удвоенному числу петель вокруг i-й вершины.
Свойства матрицы смежности:
Матрица смежности простого графа (не содержащего петель и кратных ребер) является бинарной матрицей и содержит нули на главной диагонали.
Матрица смежности полного графа Kn содержит единицы во всех своих элементах, кроме главной диагонали, на которой расположены нули.
Матрица смежности пустого графа, не содержащего ни одного ребра, состоит из одних нулей.
Матрица смежности неориентированного графа симметрична, а значит обладает действительными собственными значениями и ортогональным базисом из собственных векторов. Набор её собственных значений называется спектром графа, и является основным предметом изучения спектральной теории графов.
Два графа G1 и G2 с матрицами смежности A1 и A2 являются изоморфными если и только если существует перестановочная матрица P, такая что
PA1P-1 = A2.
Из этого следует, что матрицы A1 и A2 подобны, а значит имеют равные наборы собственных значений, определители и характеристические многочлены. Однако обратное утверждение не всегда верно — два графа с подобными матрицами смежности могут быть неизоморфны.
Степени матрицы.
Если A — матрица смежности графа G, то матрица Am обладает следующим свойством: элемент в i-й строке, j-м столбце равен числу путей из i-й вершины в j-ю, состоящих из ровно m ребер.
- Курсовая работа
- 1 Понятие графов
- 2 Общие понятия теории графов. Понятия раскраски графов
- 2.1 Общие понятия теории графов
- 2.2 Понятие раскраски графов
- 2.3 Матрица смежности
- 2.4 Матрица инцидентности
- 3 Методы раскраски графов
- 3.1 Теорема об оптимальной раскраске
- 3.2 Теорема о четырех красках
- 3.3 Раскраска плоских графов в соответствии с теоремой о четырех красках
- 3.4 Сведение задачи о раскраске к задаче о наименьшем покрытии
- 3.5 Алгоритм, использующий метод Магу – Вейссмана
- 3.6 Алгоритм неявного перебора
- 3.7 Алгоритм прямого неявного перебора
- 4 Практичческое применение расскраски графов
- 4.1 Составление расписаний
- 4.2 Распределение регистров в микропроцессорах
- 4.3 Распределение частот
- 4.4 Использование водяных знаков
- 4.5 Прочие применения