logo
1 Общее понятие о графах

2.3 Матрица смежности

Матрица смежности — один из способов представления графа в виде матрицы. Матрица смежности графа G с конечным числом вершин n (пронумерованных числами от 1 до n) — это квадратная матрица A размера n, в которой значение элемента aij равно числу рёбер из i-й вершины графа в j-ю вершину. Иногда, особенно в случае неориентированного графа, петля (ребро из i-й вершины в саму себя) считается за два ребра, то есть значение диагонального элемента aii в этом случае равно удвоенному числу петель вокруг i-й вершины.

Свойства матрицы смежности:

Два графа G1 и G2 с матрицами смежности A1 и A2 являются изоморфными если и только если существует перестановочная матрица P, такая что

PA1P-1 = A2.

Из этого следует, что матрицы A1 и A2 подобны, а значит имеют равные наборы собственных значений, определители и характеристические многочлены. Однако обратное утверждение не всегда верно — два графа с подобными матрицами смежности могут быть неизоморфны.

Степени матрицы.

Если A — матрица смежности графа G, то матрица Am обладает следующим свойством: элемент в i-й строке, j-м столбце равен числу путей из i-й вершины в j-ю, состоящих из ровно m ребер.