1. Основные свойства и модели линейного программирования
Линейное программирование – это метод математического моделирования, разработанный для оптимизации использования ограниченных ресурсов. ЛП успешно применяется в военной области, индустрии, сельском хозяйстве, транспортной отрасли, экономике, системе здравоохранения и даже в социальных науках. На алгоритмах ЛП (учитывая их компьютерную эффективность) базируются оптимизационные алгоритмы для других, более сложных типов моделей и задач, включая целочисленное, нелинейное и стохастическое программирование.
Первое знакомство с задачами линейного программирования человек получает еще на уроках алгебры из школьного учебника.
Рассмотрим, например, следующую задачу.
Условия задачи
Имеются две бетономешалки {A, B} и три стройки {1, 2, 3} (потребители бетона). В сутки стройкам требуется 700 т бетона, соответственно: 200 т, 280 т, 220 т. Производительность источников А и В равна 320 т и 380 т. Удельная стоимость доставки за тонну определена матрицей , в условных единицах.
Требуется. Определить неизбежные суточные затраты на операцию доставки грузов.
-
Содержание
- В.М. Панченко а.В. Панов
- Учебное пособие
- Введение
- 1. Основные свойства и модели линейного программирования
- Граф-схема решения задачи линейного программирования
- 1.2. Алгебраическая модель решения задачи линейного программирования
- 1.3. Геометрическая форма представления процесса решения
- 1.4. Свойства задач линейного программирования
- Симплекс-метод решения задачи линейного программирования
- 2.1. Иллюстрация процесса поиска решения
- 2.2. Алгебраическое решение
- 2.3. Табличный вариант замены переменных
- 2.4. Система «тренажер»
- 2.5. Система правил замены переменных
- 3.2. Формирование конкретной системы данных задачи линейного программирования
- 3.3. Программа Random (Windows-версия)
- 3.4. Экономическое содержание двойственности
- 4.2. Составление опорного плана тз по методу минимума стоимостей перевозки
- 4.3. Сравнение планов по критерию стоимости
- 4.4. Проверка лучшего опорного плана на оптимальность
- 4.5. Улучшение плана по методу циклических перестановок
- Заключение
- Библиографический список
- 117454, Москва, пр-кт Вернадского, 78