Эволюционный путь
В работах эволюционного подхода выделяются два направления:
«тяжелое» – использование мощных по производительности и потребляемой энергии коммерчески доступных универсальных многоядерных процессоров и заказных коммуникационных сетей (пример - линейка Cray XT);
«легкое» – использование гораздо большего (чем в первом подходе) количества не очень мощных, но экономичных, заказных процессоров и сетей, специальных методов компоновки вычислительных узлов (линейка IBM BlueGene).
В таблице 3 приведены оценки специалистами Окриджской лаборатории эволюционного развития суперкомпьютеров «тяжелого» направления.
Оценки экспертов DARPA менее оптимистичны:
рост количества ядер в одном процессоре прогнозируется только до 64.
будет по 4-8 аппаратных поддерживаемых потоков (тредов) в каждом ядре.
Количество процессоров на одной серверной плате – 16.
Из-за ограничений по энергетике и теплоотводу тактовая частота ожидается около 1,5 ГГц.
Параллелизм запуска операций в процессорном ядре – четыре операции умножения-сложения за такт.
Пиковая производительность процессора – около 0,7 TFLOPS.
Таблица 3.
Специалисты DARPA выделяют два варианта развития событий:
без ограничений потребляемой энергии;
с ограничением в 20 МВт.
При этом выделяются две модели потребления энергии при передаче и хранении данных – оптимистичная и пессимистичная.
При энергопотреблении порядка 150 MВт в 2020 году будет достижима пиковая производительность системы:
для оптимистичной модели – в 160 PFLOPS (0,16 EFLOPS);
для пессимистичной модели – лишь 9,2 PFLOPS. Количество стоек – 600.
Вариант с ограничением потребляемой энергии в 20 MВт для оптимистичной модели обеспечит 20 PFLOPS (0,02 EFLOPS), а для Fully Scaled модели – 1 PFLOPS. Количество стоек – 78.
В чем причины таких низких оценок?
Процессорное ядро используемых процессоров оптимизировано для быстрого выполнения однотредовых (однопотоковых) программ за счет совмещения выполнения машинных команд – применяется спекулятивное выполнение команд не в порядке их следования в программе, что означает применение затратных механизмов динамического переименования архитектурных регистров, запуска команд по готовности операндов и ряда других приемов. Такие ядра слишком невыгодно масштабировать в кристалле из-за занимаемой ими площади и потребляемой энергии, вдобавок они эффективны лишь для программ с хорошей пространственно-временной локализацией обращений к памяти.
В таблице 4 приведены оценки специалистов Аргонской лаборатории эволюционного развития суперкомпьютеров «легкого» направления. Это направление эксперты DARPA рассматривают как более перспективное.
Таблица 4.
Структура процессоров для суперкомпьютеров этого направления принципиально выбиралась простой и экономной по энергетике, и, судя по таблице 2, такой подход оказался полезным и для масштабируемости ядер в процессоре – их будет 96. Простота ядра позволяет повысить и частоту – до 2,8 ГГц.
Тем не менее получение экзафлопса планируется здесь лишь к 2019 году и при двукратном превышении ограничения по потребляемой энергии – 40 MВт. Дополнительно стоит отметить специфичность решаемых на таких суперкомпьютерах задач — они не требуют глобально адресуемой памяти.
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая