Основные тенденции развития суперкомпьютеров
Переход на гибридную схему
Анализ последних версий списка TOP500, в котором первые места занимают машины с гибридной архитектурой, подтверждает выводы о том, что суперкомпьютеры нового поколения будут использовать гибридную схему построения (процессоры + специализированные ускорители).
В области ускорителей конкурентов графическим процессорам (GPU) NVIDIA пока не видно, поскольку если при развитии прежними темпами число ядер в обычных ЦП может увеличиться до 32, то в графических процессорах оно уже в 2011 году достигает тысячи.
Для программирования GPU сейчас широко используется язык CUDA. Интересно отметить, что преподавание этого языка уже ввели в свои программы 340 университетов во всём мире. Появились десятки книг с описанием языка и техники программирования на CUDA. Первая книга о CUDA вышла и на русском языке.
Повышение энергоэффективности
Гибридная архитектура обеспечивает не только высокое быстродействие, но и существенно повышает энергоэффективность машины. На это сейчас обращается всё больше внимания, так как с ростом производительности суперкомпьютеров растет и их энергопотребление, и речь идёт не о сотнях киловатт-часов, а о мегаваттах. Цена этому уже сейчас доходит до 3000 $ в день, а в дальнейшем может увеличиться на порядки.
29 суперкомпьютеров потребляют мощность более 1 МВт.
Средняя энергоэффективность систем из 38 редакции списка TOP500 составляет 282 мегафлопс на ватт.
Для оценки энергоэффективности создан отдельный рейтинг Green500, в котором суперкомпьютеры ранжируются по показателю расхода энергии на один миллион операций с плавающей запятой. Первое место в нём на 11/2011 г. занимает система IBM Blue Gene/Q с показателем 2029 мегафлопс/Вт.
Впрочем, если говорить о рейтингах, на место привычного теста производительности Linpack предлагается другой, более близкий к реальным применениям тест и соответственно другой рейтинг суперкомпьютеров, названный Graph500, - ориентированный на приложения с интенсивным обменом данными (Data intensive supercomputer, DIS). Похоже, что некоторое время рейтинги TOP500 и Graph500 будут сосуществовать.
Активно развивается также способ снизить потребление электроэнергии за счет использования в суперкомпьютерах охлаждения горячей (около 40 градусов) водой. Такая технология сейчас активно внедряется, но во избежание протечек требует высокой надёжности всех соединений системы охлаждения.
Наконец, повышению энергоэффективности способствует уменьшение технологических норм при изготовлении микросхем. По данным фирмы Intel, каждый переход на новую технологическую норму снижает энергопотребление примерно на 20%. Однако, при этом возникает некоторая проблема, связанная со снижением радиационной устойчивости новых микросхем, что требует возрастающих затрат на схемы обнаружения ошибок; поэтому есть предел уменьшения технологических норм для интегральных схем, предназначенных для работы в тяжёлых условиях.
Снижение потребления и габаритных размеров позволило получить производительность в несколько терафлопс в одной стандартной стойке (19U) и сотен гигафлопс в обычном системном блоке (3U).
Таким образом, сейчас можно говорить о появлении двух новых подклассов – лабораторных и персональных суперкомпьютеров. Для последних не требуются серверные комнаты, это идеальный инструмент для отладки приложений, реальный счёт которых будет осуществляться на больших машинах, для обучения студентов параллельному программированию, для решения задач, которые велики для обычных серверов, но не требуют для решения больших суперкомпьютеров.
Увеличении многоядерности центральных процессоров
Переход на новое поколение межсоединений
Расширении сотрудничества разработчиков.
Контрольные вопросы
-
Что такое список TOP500?
-
По каким принципам включаются вычислительные системы в список TOP500?
-
Почему в списке преобладают кластерные структуры?
-
Какие коммуникационные технологии используются?
-
Процессорам каких фирм отдается предпочтение в суперкомпьютерах?
-
Какие операционные системы преобладают в суперкомпьютерах?
Yandex.RTB R-A-252273-3
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая