Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
С 2006 года назад весь мир перешел на многоядерные процессоры, и это кардинальным образом поменяло ситуацию с высокопроизводительными вычислениями – до этого рост производительности суперкомпьютеров происходил почти линейно. Но с появлением четырехядерных (и с большим числом ядер) процессоров достижение производительности в несколько терафлоп существенно упростилось: сегодня это можно сделать с помощью одной «корзины» блейд-серверов, что доступно не только крупным, но и средним предприятиям. Однако экономика оказалась не готовой к тому, чтобы эффективно использовать столь высокую вычислительную мощность. К тому же появилась возможность строить системы, состоящие из многих десятков тысяч (и даже сотен тысяч) ядер, и возник вопрос о направлении дальнейшего движения, поскольку программное обеспечение (ПО) стало несостоятельным в решении задач распараллеливания вычислений на столь большое количество ядер. Это одна из главных проблем, возникшая в связи с появлением суперкомпьютеров с производительностью 0,5-1 петафлоп.
Упомянутая проблема касается ПО всех уровней. Операционные системы должны уметь работать с десятками тысяч ядер, поэтому встал вопрос об архитектурах суперкомпьютеров – программы просто не успевают адаптироваться к скачку производительности. Возникает сомнения: а следует ли продолжать «гонку за пета- и экзафлопами» или лучше ограничиться системами среднего размера?
Широко используются высокопроизводительные вычисления в нефтяной и газовой отрасли, правда, там для решения самых разных задач используются кластеры невысокой по нынешним меркам производительности – от нескольких терафлопс до десятков терафлопс.
Основная идея использования мощных вычислительных средств в промышленности – это сокращение издержек при добыче ископаемых, поэтому в современных условиях они могут стать средством выживания.
По мнению некоторых авторов для решения различных задач будущего будет достаточно производительности:
аэродинамике - в несколько петафлопс;
молекулярной динамике – 20 петафлопс (20 * 1015 флопс);
космологии – порядка 10 эксафлопс (10 * 1018 флопс);
квантовая химия и молекулярное моделирование потребуют еще более мощных ресурсов.
Вычислительная мощь настольных ПК отстает от производительности суперкомпьютеров примерно на 12 лет. Иными словами, по уровню производительности сегодняшние профессиональные ПК практически полностью соответствуют суперкомпьютерам 12-летней давности. Поэтому положение дел с высокопроизводительными вычислениями (High Performance Computing, HPC) определяет ситуацию на рынке персональных систем в следующем десятилетии.
Контрольные вопросы
-
Назовите несколько примеров больших задач?
-
Какие задачи можно считать большими?
-
Какие вычислительные системы можно считать сверхпроизводительными?
-
Какими характеристиками должны обладать сверхвысокопроизводительные вычислительные системы?
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая