logo search
Ист

Проблема эффективного параллелизма

На роль центральной проблемы, решаемой всей нейроинформатикой и нейрокомпьютингом, А. Горбань предложил проблему эффективного параллелизма. Давно известно, что производительность компьютера возрастает намного медленнее, чем число процессоров. М. Минский сформулировал гипотезу: производительность параллельной системы растёт (примерно) пропорционально логарифму числа процессоров — это намного медленнее, чем линейная функция (Гипотеза Минского).

Для преодоления этого ограничения применяется следующий подход: для различных классов задач строятся максимально параллельные алгоритмы решения, использующие какую-либо абстрактную архитектуру (парадигму) мелкозернистого параллелизма, а для конкретных параллельных компьютеров создаются средства реализации параллельных процессов заданной абстрактной архитектуры. В результате появляется эффективный аппарат производства параллельных программ.

Нейроинформатика поставляет универсальные мелкозернистые параллельные архитектуры для решения различных классов задач. Для конкретных задач строится абстрактная нейросетевая реализация алгоритма решения, которая затем реализуется на конкретных параллельных вычислительных устройствах. Таким образом нейросети позволяют эффективно использовать параллелизм.