Современные нейрокомпьютеры
Многолетние усилия многих исследовательских групп привели к тому, что к настоящему моменту накоплено большое число различных «правил обучения» и архитектур нейронных сетей, их аппаратных реализаций и приёмов использования нейронных сетей для решения прикладных задач.
Эти интеллектуальные изобретения существуют в виде «зоопарка» нейронных сетей. Каждая сеть из зоопарка имеет свою архитектуру, правило обучения и решает конкретный набор задач. В последнее десятилетие прилагаются серьёзные усилия для стандартизации структурных элементов и превращений этого «зоопарка» в «технопарк»: каждая нейронная сеть из зоопарка реализована на идеальном универсальном нейрокомпьютере, имеющем заданную структуру.
Основные правила выделения функциональных компонентов идеального нейрокомпьютера (по Миркесу):
Относительная функциональная обособленность: каждый компонент имеет чёткий набор функций. Его взаимодействие с другими компонентами может быть описано в виде небольшого числа запросов.
Возможность взаимозамены различных реализаций любого компонента без изменения других компонентов.
Постепенно складывается рынок нейрокомпьютеров. В настоящее время широко распространены различные высокопараллельные нейро-ускорители (сопроцессоры) для различных задач. Моделей универсальных нейрокомпьютеров на рынке мало отчасти потому, что большинство из них реализованы для спецприменений. Примерами нейрокомпьютеров являются нейрокомпьютер Synapse (Siemens, Германия), процессор NeuroMatrix. Издаётся специализированный научно-технический журнал «Нейрокомпьютеры: разработка, применение» С технической точки зрения сегодняшние нейрокомпьютеры — это вычислительные системы с параллельными потоками одинаковых команд и множественным потоком данных (MSIMD-архитектура). Это одно из основных направлений развития вычислительных систем с массовым параллелизмом.
Искусственная нейронная сеть может передаваться от (нейро)компьютера к (нейро)компьютеру, так же как и компьютерная программа. Более того, на её основе могут быть созданы специализированные быстродействующие аналоговые устройства. Выделяются несколько уровней отчуждения нейронной сети от универсального (нейро)компьютера: от сети, обучающейся на универсальном устройстве и использующей богатые возможности в манипулировании задачником, алгоритмами обучения и модификации архитектуры, до полного отчуждения без возможностей обучения и модификации, только функционирование обученной сети.
Одним из способов подготовки нейронной сети для передачи является её вербализация: обученную нейронную сеть минимизируют с сохранением полезных навыков. Описание минимизированной сети компактнее и часто допускает понятную интерпретацию.
- Раздел 1. Важнейшие этапы развития вычислительной техники до появления компьютеров.
- 2. Механические, автоматические вычислительные устройства.
- 3. Электромеханический этап развития вычислительной техники
- Раздел 2. Поколения компьютеров.
- 1. Хронология поколений компьютеров.
- 2. Первое поколение компьютеров, вакуумно-ламповая технология.
- 1. Создание интегральных схем.
- Уровни проектирования
- Классификация Степень интеграции
- Технология изготовления
- Вид обрабатываемого сигнала
- Технологический процесс
- Назначение
- Корпуса микросхем
- Специфические названия микросхем
- 2.Третье поколение компьютеров.
- 1.Бис, история создания процессора.
- 2. Четвертое поколение эвм. Принципы создания больших цифровых интегральных схем
- Процессор
- 2. Четвертое поколение эвм.
- 1. Предпосылки, подходы и направления развития искусственного интеллекта
- Происхождение и понимание термина «искусственный интеллект»
- Предпосылки развития науки искусственного интеллекта
- История развития искусственного интеллекта в ссср и России
- Подходы и направления Подходы к пониманию проблемы
- Тест Тьюринга и интуитивный подход
- Символьный подход
- Логический подход
- Агентно-ориентированный подход
- Гибридный подход
- Символьное моделирование мыслительных процессов
- Работа с естественными языками
- Представление и использование знаний
- Машинное обучение
- Биологическое моделирование искусственного интеллекта
- Робототехника Интеллектуальная робототехника
- Машинное творчество
- Другие области исследований
- 2. Современный искусственный интеллект, связь с другими науками. Современный искусственный интеллект
- Применение
- Связь с другими науками
- Компьютерные технологии и кибернетика
- Психология и когнитология
- Философия
- Вопросы создания ии
- Религия
- Научная фантастика
- Происхождение и понимание термина «искусственный интеллект»
- Предпосылки развития науки искусственного интеллекта
- История развития искусственного интеллекта в ссср и России
- Подходы и направления Подходы к пониманию проблемы
- Достоинства теста
- Другие существующие подходы Символьный подход
- Логический подход
- Агентно-ориентированный подход
- Гибридный подход
- Символьное моделирование мыслительных процессов
- Работа с естественными языками
- Представление и использование знаний
- 2. Современный искусственный интеллект, связь с другими науками. Современный искусственный интеллект
- Связь с другими науками
- Компьютерные технологии и кибернетика
- Психология и когнитология Конгнитология – среда деятельности, связанная с анализам знаний.
- Философия
- Вопросы создания ии
- Религия
- Научная фантастика
- 1. Базовые идеи нейронных сетей
- Возможности и особенности нейронных сетей
- Области применения нейронных сетей
- Нейронные сети - точность решения задач Нейрокомпьютер
- Основная идея — коннекционизм
- Проблема эффективного параллелизма
- Современные нейрокомпьютеры
- Новый поворот — «влажный продукт»
- Персептрон
- Многослойный персептрон.
- 1. Рождение советской вычислительной техники
- 1.2 Эвм «Стрела»
- 1.3 Эвм «м-1»
- 1.3.1 Эвм «м-2»
- 1.4 Эвм «Сетунь».
- 1.5 Ibm 701
- 1.6 Эвм «м-20»
- 2. Второе поколение советских эвм.
- 5Э261 – первая в ссср мобильная многопроцессорная высокопроизводительная управляющая система.
- Предательство.
- 3. Исторические факты.