Экзафлопсный барьер: проблемы и решения
Концептуальная проработка вопросов создания после 2015 года суперкомпьютеров экзафлопсного уровня производительности показывает, что применение экстенсивных методов повышения производительности, как это наблюдалось до недавних пор ничего не даст.
Исключительность проблем, которые предстоит решить в связи с созданием суперкомпьютеров экзафлопсного уровня, определяют следующие обстоятельства:
прекращение прямого влияния закона Мура на производительность ядер процессоров из-за невозможности дальнейшего увеличения тактовой частоты и параллелизма выполнения машинных команд;
жесткие ограничения по потребляемой энергии, с которыми разработчики столкнулись впервые за последние 15 лет;
проблема «стены памяти», к преодолению которой в середине прошлого десятилетия приступили в рамках проектов создания перспективных петафлопсных суперкомпьютеров.
В работах по экзафлопсной тематике, как и по суперкомпьютерам вообще, выделяют два направления:
первое направление - эволюционное развитие суперкомпьютеров. Предполагается быстрое получение результатов (модели Cray XT, IBM BlueGene);
второе направление - революционное. В этом направлении проблема рассматривается глубже, планируется создание уже в ближайшие годы петафлопсных суперкомпьютеров, способных эффективно решать широкий класс задач, среди которых выделяются задачи, работающие с огромными объемами памяти и имеющие плохую пространственно-временную локализацию обращений к ней. Данное направление активно поддерживается военными кругами и спецслужбами, в его рамках применяются новые технологии, архитектурные и программные решения. Так происходит сейчас при создании петафлопсной техники, так будет и при создании экзафлопсных систем.
Исторически при разработке петафлопсных систем эволюционные методы сработали раньше за счет быстрого и успешного внедрения универсальных процессоров с однородной многоядерностью – барьер реальной производительности 1 PFLOPS был преодолен через четыре года после начала эволюционной программы, в ноябре 2008 года, на суперкомпьютере Jaguar (Сray XT5). В 2009 году Jaguar был модернизирован введением 12-ядерных процессоров AMD Magny Cours и доведен до пиковой производительности в 2,3 PFLOPS.
Будет ли такой же ступенчатой картина развития экзафлопсных систем и станет ли таким же успешным эволюционный метод повышения производительности за счет естественного роста однородной многоядерности процессоров общего назначения?
Заявляя о программах создания экзафлопсных систем, обычно представляют системы, содержащие от нескольких сотен до тысячи стоек, с развиваемой производительностью хотя бы на задаче Linpack в 1018 операций с плавающей запятой в секунду (EFLOPS). Однако задача намного глубже, и сейчас, во всяком случае в программах DARPA, она ставится шире, предусматривая создание следующих систем:
экзафлопсные системы для государственных лабораторий и центров, которые могут развивать реальную производительность в 1 EFLOPS, что в 1000 раз превосходит современные системы петафлопсного уровня производительности;
петафлопсные системы масштаба предприятия, которые благодаря применению новых экзафлопсных технологий станут значительно компактнее и будут потреблять меньше электроэнергии, размещаясь в нескольких стандартных стойках;
терафлопсные системы встроенного типа на базе нескольких чипов, потребляющих несколько десятков ватт электроэнергии. В системах всех трех классов предполагается использовать одинаковые технологии, ключевые для систем первого класса.
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая