Основные компоненты и подсистемы современных серверов
Часто возникает вопрос – почему серверы стоят гораздо дороже, чем обычные мощные вычислительные системы? В чем их отличие от персональных компьютеров и почему настоящие серверы лучше. Ответить на этот вопрос можно лишь рассмотрев основные компоненты, из которых строится сервер.
Корпуса
Существует два основных вида серверных корпусов: стоечные и пьедестальные. Пьедестальные корпуса (pedestal) – стандартные «башни», отличающиеся от корпусов персональных компьютеров лишь размерами, более емкой корзиной для накопителей и более качественным охлаждением. На сегодняшний день пьедестальные корпуса теряют популярность, их место занимают стоечные корпуса (rackmount). Они предназначены для установки в 19-дюймовую телекоммуникационную стойку или шкаф. Как правило, стоечные корпуса комплектуются рельсами, позволяющими выдвигать серверы для проведения сервисных работ. Такие корпуса занимают меньше места и удобнее в обслуживании. Их высота измеряется в единицах, кратных 44,5 мм (U). Самые распространенные размеры стоечных корпусов: 1U, 2U, 4U и 5U.
Блоки питания
Серверные компоненты (процессоры, жесткие диски, материнские платы и др.), в силу своей высокой производительности потребляют больше электроэнергии, чем их аналоги для персональных компьютеров. Следовательно, для серверов требуются более мощные и надежные источники питания.
В целях повышения надежности в серверах зачастую используют источники питания с резервированием. В случае выхода из строя одного источника питания, в действие вступает дополнительный, при этом питание не теряется. Администратору на консоль поступает сообщение об отказе одного из источников, что дает ему возможность оперативно заменить неисправную часть и восстановить резервирование. Соответственно, в данном случае источники питания поддерживают возможность «горячей» замены, без выключения сервера.
Материнские платы
В серверных системах используются материнские платы двух форм-факторов: ATX(E-ATX) и SSI. ATX более старый и привычный стандарт, главным образом ориентированный на персональные компьютеры. Сегодня на его базе создают лишь серверные платы начального уровня. SSI (Server System Infrastructure) – специальный стандарт на серверные компоненты (блоки питания и корпуса), активно поддерживаемый фирмой Intel. Введение открытого стандарта SSI упростило создание новых серверных корпусов и блоков питания, а, следовательно, и уменьшило издержки и конечную цену для пользователя.
Видимое отличие материнских плат двух стандартов заключается в разных разъемах питания: 20-контактный - у ATX(E-ATX), и новый 24-контактный - у SSI. Отличается также и размер платы – SSI это всегда 12"x13", ATX- 12"x9.8", E-ATX-12"x13". В принципе возможно подключение SSI блока питания к ATX плате и наоборот, через специальные переходники, поскольку разъем SSI фактически представляет собой разъем ATX + дополнительные контакты для 3.3В и 5В.
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая