«Лезвия» векторной обработки Cray x2
Векторные процессоры сегодня в мире используются редко (естественно, речь не идет о графических процессорах или процессорах х86-архитектуры c векторными расширениями системы команд типа SSE, включающими обработку очень коротких векторов). Кроме унаследованных приложений, к применению векторных систем могут подтолкнуть, пожалуй, только очень высокие требования к пропускной способности оперативной памяти, где векторные процессоры – при обращении к последовательным адресам памяти – обладают преимуществами.
Для таких приложений в Cray XT5h используются «лезвия» векторной обработки Cray X2. Эти вычислительные «лезвия» состоят из двух векторных вычислительных узлов. Каждый узел представляет собой четырехпроцессорную симметричную систему с общим полем оперативной памяти емкостью 32-64 Гбайт (рис. 4).
Векторные процессоры (V) работают на частоте 1,6 ГГц, имеют производительность 25,6 GFLOPS и являются одноядерными. Каждый векторный процессор V содержит суперскалярный процессор и восемь векторных конвейеров. В состав векторного процессора V входит три уровня кэша, в том числе 512 Кбайт кэша второго уровня и 8 Мбайт – третьего. Обеспечивается когерентность кэш-памяти разных векторных процессоров V.
Рис. 4.
Производительность узла составляет свыше 100 GFLOPS (это, однако, меньше, чем у «обычных» узлов на базе процессоров Istanbul), а пропускная способность оперативной памяти в расчете на один векторный процессор V равна 28,5 Гбайт/с.
Внутри узла оперативная память однородна по времени доступа, но при доступе в оперативную память другого узла мы имеем модель NUMA. Для связи векторных узлов применяется другое, разработанное фирмой Cray, межсоединение с топологией «толстого дерева», представляющее собой один из вариантов сети Клоза.
Пропускная способность межсоединения для связей «точка-точка» составляет 9,4 Гбайт/с; в фирме Сray говорят и о низких величинах задержки. Структурно возможно масштабирование векторной подсистемы Cray ХТ5h до 32K векторных процессоров, работающих с общим глобальным адресным пространством.
Таким образом, речь фактически идет о векторной многопроцессорной системе с собственным межсоединением, «погруженной» в Cray XT5. Для взаимодействия векторной подсистемы с межсоединением SeaStar2+ применяются прямые интерфейсы в узлах, имеющие пропускную способность 4,8 Гбайт/с (рис. 4).
«Лезвия» этой векторной подсистемы размещаются в стойках высотой 2м и основанием 1м х 1,6м, вес которых составляет 1,1 тонн, а энергопотребление – до 45 кВт.
- Что такое параллельные вычислительные системы и зачем они нужны
- Некоторые примеры использования параллельных вычислительных систем Об использования суперкомпьютеров
- Классификация параллельных вычислительных систем
- Классификация современных параллельных вычислительных систем с учетом структуры оперативной памяти, модели связи и обмена Симметричные скалярные мультипроцессорные вычислительные системы
- Несимметричные скалярные мультипроцессорные вычислительные системы
- Массово параллельные вычислительные системы с общей оперативной памятью
- Массово параллельные вычислительные системы с распределенной оперативной памятью
- Серверы
- Требования к серверам Основные компоненты и подсистемы современных серверов
- Структуры несимметричных мвс с фирмы Intel Структурные особенности процессоров со структурой Nehalem
- Структуры мвс с процессорами Nehalem
- Мвс на базе процессоров фирмы amd
- Структура шестиядерного процессора Istanbul приведена на рис. 23.
- Примеры структур несимметричных мвс с процессорами линии Opteron Barcelona, Shanghai, Istanbul
- Сравнение структур мвс с процессорами Barcelona, Shanghai, Istanbul с мвс с процессорами со структурой Nehalem
- 12 Ядерные процессоры Magny-Cours
- Основные особенности 12-ти и 8-ми ядерных микросхем Magny-Cours
- Структуры мвс с процессорами Magny--Cours
- Перспективы развития процессоров фирмы amd для мвс
- Мвс на базе процессоров фирмы ibm power6, power7 Основные особенности процессоров power6, power7
- Процессор power6
- Структуры мвс на базе процессоров power4, power5
- Структуры мвс на базе процессоров power6, power7
- Требования к серверам
- Основные компоненты и подсистемы современных серверов
- Поддерживаемые шины ввода-вывода
- Raid контроллеры
- Сервер Superdome 2 для бизнес-критичных приложений
- Структура сервера
- Надежность и доступность
- Конфигурации и производительность
- Основные особенности симметричных мультипроцессорных систем?
- Векторные параллельные системы
- Скалярная и векторная обработка
- Основные особенности векторных параллельных систем
- Векторные параллельные системы sx-6, sx-7 фирмы nec
- Особенности вычислительной системы sx-7
- Параллельная векторная система Earth Simulator
- Cуперкластерная система
- Суперкомпьютер CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и общей оперативной памятью
- Массово параллельные вычислительные системы с скалярными вычислительными узлами и распределенной оперативной памятью
- Cуперкомпьютеры семейства cray xt Семейство Cray xt5
- «Гибридные» суперкомпьютеры CrayXt5h
- «Лезвия» векторной обработки Cray x2
- «Лезвия» с реконфигурируемой структурой
- Развитие линии Cray хт5 – Cray xt6/xt6m
- Модель Cray xe6
- Процессор
- Коммуникационная среда с топологией «3-мерный тор»
- Реализация коммуникационных сред
- Операционная система
- Суперкомпьютер RoadRunner
- Топологии связей в массово параллельных системах
- Оценка производительности параллельных вычислительных систем
- Необходимость оценки производительности параллельных вычислительных систем
- Реальная производительность параллельных вычислительных систем Анализ «узких мест» процесса решения задач и их влияния на реальную производительность
- «Узкие» места, обусловленные иерархической структурой памяти
- Влияние на реальную производительность параллельных вычислительных систем соответствия их структуры и структуры программ
- Анализ реальной производительности («узких» мест) мвс с общей оперативной памятью
- Анализ реальной производительности («узких» мест) кластерных систем с распределённой оперативной памятью
- Какие «узкие места» процесса решения задач существенно влияют на реальную производительность параллельных вычислительных систем?
- Тенденции развития суперкомпьютеров. Список top500
- Что такое список тор 500 и как он создается?
- 38 Редакция списка (ноябрь 2011 г.)
- Коммуникационные технологии
- Архитектуры, модели процессоров и их количество в системах списка
- Основные тенденции развития суперкомпьютеров
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Производительность 500 лучших суперкомпьютеров за последние 18 лет
- Перспективные суперкомпьютеры тера- и экзафлопного масштаба
- Программа darpa uhpc
- Основные положения программы uhpc
- Экзафлопсный барьер: проблемы и решения
- Проблемы
- Эволюционный путь
- Революционный путь
- Кто победит?
- Примеры перспективных суперкомпьютеров Суперкомпьютер фирмы ibm Mira
- Стратегические суперкомпьютерные технологии Китая