5.2.2. Sinks - приемники сигналов
Библиотека блоков показана на рис.2.12. Вся библиотека разбита на три раздела.
Рис. 5.12. Библиотека приемников сигналов
1.Блоки выходов моделей и подсистем (Model & Subsystem Outputs).
2. Блоки для визуализации данных (Data Viewers).
3. Блок управления временем моделирования (Simulation Control).
Выходные порты модели и подсистемы содержат четыре блока.
Out – блок выходного порта.
Создает выходной порт для подсистемы или для модели верхнего уровня иерархии.
Блоки Outputs подсистемы являются ее выходами. Сигнал, подаваемый в блок Output внутри подсистемы, передается в модель (или подсистему) верхнего уровня.
При создании подсистемы с помощью команды Edit/Create subsystem выходные порты создаются и нумеруются автоматически. На рис. 5.13 показана модель из ранее рассмотренного примера модели широтно-импульсного модулятора (рис. 5.10). Здесь часть схемы с помощью команды Edit/Create преобразована в подсистему. Схема этой подсистемы с входными и выходными портами видна в правой части рисунка.
Выходной порт в системе верхнего уровня используется для передачи сигнала в рабочее пространство MATLAB.
Terminator – концевой приемник сигналов. В том случае, когда выход блока оказывается не подключенным ко входу другого блока, Simulink выдает предупреждающее сообщение в командном окне MATLAB. Для исключения этого необходимо использовать блок Terminator.
Рис. 2.13. Модель с подсистемой, входными и выходными портами
То File – блок сохранения данных в файле. Блок записывает данные, поступающие на его вход, в файл. В окна настройки параметров блока следует ввести имя файла для записи (Filename) и имя переменной, содержащей записываемые данные (Variable name). Если не указан полный путь файла, то файл сохраняется в текущей рабочей папке.
Кратность записи в файл входного сигнала определяется параметром Decimation. Шаг модельного времени (Sample time) определяет дискретность записи данных.
Пример использования данного блока был рассмотрен ранее (рис. 5.9).
То Workspace – блок сохранения данных в рабочей области. Блок записывает данные, поступающие на его вход, в рабочую область MATLAB.
В окне параметров блока, кроме рассмотренных выше, задается максимальное количество сохраняемых расчетных точек по времени (Limit data points to last). Отсчет ведется от момента завершения моделирования. В том случае, если значение параметра Limit data points to last задано как inf, то в рабочей области будут сохранены все данные.
Формат сохранения данных выбирается из выпадающего списка (Save format).
Для считывания данных, сохраненных в рабочей области MATLAB, можно использовать блок From Workspace (библиотека Sources).
Раздел для визуализации данных (Data Viewers) включает четыре блока.
Scope – осциллограф. Строит графики исследуемых сигналов в функции времени. Позволяет наблюдать за изменениями сигналов в процессе моделирования.
Для того чтобы открыть окно просмотра сигналов, необходимо выполнить двойной щелчок левой клавишей «мыши» на изображении блока. В том случае, если на вход блока поступает векторный сигнал, то кривая для каждого элемента вектора строится отдельным цветом.
Настройка окна осциллографа выполняется с помощью панелей инструментов (рис. 5.14).
Рис. 2.14. Панель инструментов блока Scope
Панель инструментов содержит 11 кнопок, большинство из которых являются типовыми для Windows приложений.
Параметры блока устанавливаются в окне ‘Scope’ parameters, которое открывается с помощью инструмента (Parameters) панели инструментов. Окно параметров имеет две вкладки:
General – общие параметры.
Data history – параметры сохранения сигналов в рабочей области MATLAB. Вкладка общих параметров показана на рис. 5.15.
Рис. 2.15. Вкладка общих параметров General
На вкладке General задаются следующие параметры:
1. Number of axes – число входов осциллографа. При изменении этого параметра на изображении блока появляются дополнительные входные порты.
2.Time range – величина временного интервала, для которого отображаются графики. Если время расчета модели превышает заданное параметром Time range, то вывод графика производится порциями, при этом интервал отображения каждой порции графика равен заданному значению Time range.
3.Tick labels – вывод/скрытие осей и меток осей.
4. Sampling – установка параметров вывода графиков в окне. Задает режим вывода расчетных точек на экран. При выборе Decimation кратность вывода устанавливается числом, задающим шаг выводимых расчетных точек.
5.Floating scope – перевод осциллографа в «свободный» режим (при установленном флажке).
На вкладке Data history (рис. 5.16) задаются следующие параметры:
Limit data points to last – максимальное количество отображаемых расчетных точек графика. При превышении этого числа начальная часть графика обрезается. В том случае, если флажок параметра Limit data points to last не установлен, то Simulink автоматически увеличит значение этого параметра для отображения всех расчетных точек.
Рис. 5.16. Вкладка Data history
Save data to workspace – сохранение значений сигналов в рабочей области MATLAB.
Variable name – имя переменной для сохранения сигналов в рабочей области MATLAB.
Format – формат данных при сохранении в рабочей области MATLAB.
Осциллограф (Floating Scope), по сути, есть обычный осциллограф Scope, переведенный в «свободный» режим. В этом режиме блок осциллографа не имеет входов, а выбор отображаемого сигнала осуществляется с помощью инструмента (Signal selection) панели инструментов. Для выбора сигналов необходимо выполнить следующие действия:
Выделить систему координат, в которой будет отображаться график. Это достигается с помощью одиночного щелчка левой клавишей «мыши» внутри нужной системы. Выбранная система координат будет подсвечена по периметру синим цветом.
С помощью инструмента открыть окно диалогаSignal Selector (рис. 5.17).
Рис. 5.17. Окно диалога Signal Selector
Отметить флажком имена блоков, сигналы, с выхода которых требуется исследовать.
После выполнения расчета в окне блока Floating Scope будут отображены выбранные сигналы.
Схема модели с использованием осциллографа Floating Scope дана на рис. 5.18. В окне осциллографа отображаются входной и выходной сигналы блока Transfer Fcn.
Рис. 5.18. Схема модели с осциллографом Floating Scope
Задание. Сделать 2…3 модели с различными входными источниками
- Математическое моделирование объектов и систем управления предисловие
- Введение
- Глава 1 определение и назначение моделирования
- 1.1. Общие определения
- Контрольные вопросы
- 1.2. Классификация методов моделирования по типу модели
- Контрольные вопросы
- 1.3. Математическое моделирование и математические модели
- Контрольные вопросы
- 1.4. Классификация методов математического моделирования применительно к этапу построения математической модели
- Контрольные вопросы
- 1.5. Классификация методов математического моделирования применительно к этапу исследования математической модели
- Контрольные вопросы
- 1.6. Характеристики математической модели
- Контрольные вопросы
- Глава 2 автоматизированное моделирование технических объектов
- Контрольные вопросы
- 2.1. Особенности современных систем автоматизированного моделирования
- Контрольные вопросы
- 2.2. Иерархическое проектирование и многоуровневое моделирование мехатронных систем
- Контрольные вопросы
- 2.3. Архитектура программ автоматизированного моделирования
- 2.3.1. Графический интерфейс программ математического моделирования динамических систем
- 2.3.2. Язык описания объекта, транслятор, система управления базами данных, монитор
- 2.3.3. Инструментальные средства моделирования (математическое ядро)
- Контрольные вопросы
- 2.4. Методы построения моделирующих программ
- 2.4.1. Структурное моделирование
- 2.4.2. Решатели для структурного и физического мультидоменного моделирования
- Контрольные вопросы
- Глава 3 пакеты визуального моделирования мехатронных систем
- 3.1. Классификация пакетов моделирования технических систем
- 3.2. Пакеты структурного моделирования
- 3.2.1. Пакет matlab/Simulink
- 3.2.2. Пакет VisSim
- 3.2.3. Пакет мвту
- 3.3. Пакеты физического мультидоменного моделирования
- 3.3.1. Пакет Modelica/Dymola
- 3.3.2. Пакет 20-sim
- 3.4. Пакеты среды matlab для моделирования мехатронных систем
- 3.4.1. Принципы моделирования механических систем в пакете SimMechanics
- 3.4.2. Пакет моделирования электрических систем
- 3.4.3. Пакет моделирования гибридных систем StateFlow
- 4. Моделирование объектов в пакетах matlab/Simulink
- 4.1. Моделирование, основные понятия и определения
- 4.2. Вопросы разработки моделей мехатронных систем
- 5. Пакет Simulink – виртуальная среда проектирования мехатронных систем
- 5.1.Общие вопросы создания моделей в пакете Simulink
- 5.1.1. Обозреватель разделов библиотеки пакета Simulink
- 5.1.2. Создание модели
- 5.1.3.Установка параметров расчета и его выполнение
- 5.1.4. Установка параметров обмена
- Установки параметров моделирования
- 5.1.5. Выполнение расчета.
- 5.2. Библиотеки пакета Simulink
- 5.2.1. Sources – источники сигналов
- 5.2.2. Sinks - приемники сигналов
- 5.2.3. Continuous – аналоговые (непрерывные) блоки
- 5.2.4. Discontinuities – нелинейные блоки
- 5.2.5. Discrete – дискретные блоки
- 5.2.6. Math – блоки математических операций
- 5.2.7. Signal Routing – библиотека маршрутизации сигналов
- 6. Динамика объектов управления
- 6.1. Математическое описание непрерывных объектов управления в мехатронных системах
- 6.3. Представление математического описания объектов управления мехатронных систем в пакете Simulink
- 6.4. Динамические характеристики объектов управления
- 6.5.. Динамические характеристики объектов управления
- Глава 7. Элементы устройств силовой электроники в пакете Sim Power System
- 7.1. Пакет расширения Sim Power System
- 7.1.1. Основные особенности создания моделей
- 7.1. Библиотека пакета Sim Power Systems 3
- 7.2. Electrical Sources - источники электрической энергии
- 7.3. Elements - электротехнические элементы
- 7.4. Power Electronics - устройства силовой электроники
- Measurements - измерительные и контрольные устройства
- 7.5. Powerlib Extras - расширенные библиотеки
- 7.6. Активные элементы силовых полупроводниковых преобразователей в пакете Sim Power System
- Идеальный источник постоянного напряжения
- Глава 8. Элементы устройств в пакете Simscape
- Глава 8 Моделирование гидравлических систем в matlab введение
- 8.1. Гидравлические источники
- Библиографический список